Criterion for the commutant of a quantized field to be algebraically closed
Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 2, pp. 161-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A necessary and sufficient condition is formulated for the commutant [4–5] of a given quantized field to be algebraically closed (i.e., closed with respect to algebraic operations). If the field satisfies the usual Wightman axions, the assumption that its commutant is a $^*$ algebra implies that this $^*$ algebra is abelian.
@article{TMF_1970_5_2_a0,
     author = {A. N. Vasil'ev},
     title = {Criterion for the commutant of a~quantized field to be algebraically closed},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {161--166},
     year = {1970},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_5_2_a0/}
}
TY  - JOUR
AU  - A. N. Vasil'ev
TI  - Criterion for the commutant of a quantized field to be algebraically closed
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 161
EP  - 166
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_5_2_a0/
LA  - ru
ID  - TMF_1970_5_2_a0
ER  - 
%0 Journal Article
%A A. N. Vasil'ev
%T Criterion for the commutant of a quantized field to be algebraically closed
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 161-166
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1970_5_2_a0/
%G ru
%F TMF_1970_5_2_a0
A. N. Vasil'ev. Criterion for the commutant of a quantized field to be algebraically closed. Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 2, pp. 161-166. http://geodesic.mathdoc.fr/item/TMF_1970_5_2_a0/

[1] H. J. Borchers, Nuovo Cim., 24 (1962), 214 | DOI | MR | Zbl

[2] H. J. Borchers, Nuovo Cim., 15 (1960), 784 | DOI | MR | Zbl

[3] M. A. Naimark, Normirovannye koltsa, «Nauka», 1968, str. 579 | MR | Zbl

[4] A. N. Vasilev, TMF, 2 (1970), 153 | MR

[5] A. N. Vasilev, TMF, 3 (1970), 24 | MR