Space-like solutions of Gel'fand-Yaglom type equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 1, pp. 25-38
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the existence of space-like solutions ofGel'fand-Yaglomtype equations of the most general form. For the case when the matrix $\|c_{\tau\tau'}\|$, determining $L^0$ is either nondegenerate or Hermitian and the mass spectrum of time-like states contains no degenerate branches, i.e., $m_i(s)\equiv m_j(s+n)$ ($i\ne j$, $n=0, 1, 2,\dots$), it is shown that there is always a continuum of “masses” corresponding to space-like solutions. For the case when the mass spectrum of time-like states contains degenerate branches a class of equations is given that does not admit space-like solutions.
@article{TMF_1970_5_1_a2,
     author = {L. M. Slad},
     title = {Space-like solutions of {Gel'fand-Yaglom} type equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {25--38},
     year = {1970},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_5_1_a2/}
}
TY  - JOUR
AU  - L. M. Slad
TI  - Space-like solutions of Gel'fand-Yaglom type equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 25
EP  - 38
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_5_1_a2/
LA  - ru
ID  - TMF_1970_5_1_a2
ER  - 
%0 Journal Article
%A L. M. Slad
%T Space-like solutions of Gel'fand-Yaglom type equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 25-38
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1970_5_1_a2/
%G ru
%F TMF_1970_5_1_a2
L. M. Slad. Space-like solutions of Gel'fand-Yaglom type equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 1, pp. 25-38. http://geodesic.mathdoc.fr/item/TMF_1970_5_1_a2/

[1] E. Majorana, Nuovo Cim., 9 (1932), 335 ; V. Bargmann, Math. Rev., 10, 583; (1949), 584 | DOI | MR | Zbl

[2] I. M. Gelfand, A. M. Yaglom, ZhETF, 18 (1948), 703 | MR

[3] G. Feinberg, Phys. Rev., 159 (1967), 1089 ; M. E. Arons, E. C. G. Sudarshan, Phys. Rev., 173 (1968), 1622 ; J. Dhar, E. C. G. Sudarshan, Phys. Rev., 174 (1968), 1808 | DOI | DOI | DOI

[4] T. Alväger, M. N. Kreisler, Phys. Rev., 171 (1968), 1357 ; M. B. Davis, M. N. Kreisler, T. Alväger, Phys. Rev., 183 (1969), 1132 | DOI | DOI

[5] I. T. Grodsky, R. F. Streater, Phys. Rev. Lett., 20 (1968), 695 | DOI | Zbl

[6] E. Abers, I. T. Grodsky, R. E. Norton, Phys. Rev., 159 (1967), 1222 | DOI

[7] D. Tz. Stoyanov, I. T. Todorov, J. Math. Phys., 9 (1968), 2146 | DOI | Zbl

[8] W. Rühl, Comm. Math. Phys., 6 (1967), 312 | DOI | MR | Zbl

[9] M. B. Halpern, Phys. Rev., 159 (1967), 1328 | DOI

[10] C. Fronsdal, Phys. Rev., 156 (1967), 1665 | DOI

[11] Y. Nambu, Phys. Rev., 160 (1967), 1171 | DOI

[12] A. A. Komar, L. M. Slad, TMF, 1 (1969), 50 | Zbl