Fields and local observables in an axiomatic algebraic theory with superselection rules
Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 1, pp. 10-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of constructing fields from local observables is considered in the framework of a concrete algebraic theory with superselection rules proposed recently by V. N. Sushko and the author. The possibility of using the methods developed by Doplicher, Haag, and Roberts is discussed. A number of preliminary results in this direction is obtained: 1) the set of cyclic and separating vectors of the local observable algebras of coherent superselection sectors is described in detail; 2) physical equivalence of the coherent sectors is proved anda considerable number of criteria is deduced for the local unitary equivalence of the sectors; 3) a necessary condition for duality is found and the relation between the duality properties and local unitary equivalence is clarified.
@article{TMF_1970_5_1_a1,
     author = {S. S. Horuzhy},
     title = {Fields and local observables in an~axiomatic algebraic theory with superselection rules},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {10--24},
     year = {1970},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_5_1_a1/}
}
TY  - JOUR
AU  - S. S. Horuzhy
TI  - Fields and local observables in an axiomatic algebraic theory with superselection rules
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 10
EP  - 24
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_5_1_a1/
LA  - ru
ID  - TMF_1970_5_1_a1
ER  - 
%0 Journal Article
%A S. S. Horuzhy
%T Fields and local observables in an axiomatic algebraic theory with superselection rules
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 10-24
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1970_5_1_a1/
%G ru
%F TMF_1970_5_1_a1
S. S. Horuzhy. Fields and local observables in an axiomatic algebraic theory with superselection rules. Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 1, pp. 10-24. http://geodesic.mathdoc.fr/item/TMF_1970_5_1_a1/

[1] H. J. Borchers, Commun. Math. Phys., 1 (1965), 57 | DOI | MR | Zbl

[2] H. J. Borchers, Commun. Math. Phys., 1 (1965), 281 | DOI | MR | Zbl

[3] S. Doplicher, R. Haag, J. E. Roberts, Commun. Math. Phys., 13 (1969), 1 | DOI | MR | Zbl

[4] S. Doplicher, R. Haag, J. E. Roberts, Commun. Math. Phys., 15 (1969), 173 | DOI | MR | Zbl

[5] V. N. Sushko, S. S. Khoruzhii, TMF, 4 (1970), 171 | Zbl

[6] K. Kraus, Z. Phys., 181 (1964), 1 | DOI | MR | Zbl

[7] M. Guenin, Algebraic methods in quantum field theory, Lectures in theoretical physics, IX-A, Gordon Breach, 1967 | MR

[8] J. Dixmier, Les $C^*$ algebres et leurs representations, Paris, 1964 | MR

[9] H. Reeh, S. Schlieder, Nuovo Cim., 22 (1961), 1051 | DOI | MR

[10] J. Dixmier, Les algebres d'operateours dans l'espace Hilbertien (les algebres de von Neumann), Paris, 1957 | MR

[11] R. Haag, D. Kastler, J. Math. Phys., 5 (1964), 848 | DOI | MR | Zbl

[12] R. V. Kadison, Proc. Nat. Ac. Sci. USA, 43 (1957), 273 | DOI | MR | Zbl