Representations of the complete inhomogeneous de Sitter group and equations in the five-dimensional approach. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 3, pp. 360-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the irreducible representations of the complete inhomogeneous de Sitter group $\widetilde{\mathscr P}(1,4)$. Canonical and noncanonical equations of motion that are invariant under the group $\widetilde{\mathscr P}(1,4)$ are found. An equation is proposed which enables one to obtain a mass spectrum of particles that increases with the spin and isospin. A subsidiary result is an equation of motion for a particle with vanishing mass; this is a covariant generalization of the Weyl–Hammer–Wood equation. It is shown that the simplest $P$-, $T$-, $C$-invariant equation in the five-dimensional approach is the eight-component equation (6.7). Canonical transformations for Dirac-type equations are considered.
@article{TMF_1970_4_3_a7,
     author = {W. I. Fushchych},
     title = {Representations of the complete inhomogeneous {de~Sitter} group and equations in the five-dimensional {approach.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {360--382},
     year = {1970},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a7/}
}
TY  - JOUR
AU  - W. I. Fushchych
TI  - Representations of the complete inhomogeneous de Sitter group and equations in the five-dimensional approach. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 360
EP  - 382
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a7/
LA  - ru
ID  - TMF_1970_4_3_a7
ER  - 
%0 Journal Article
%A W. I. Fushchych
%T Representations of the complete inhomogeneous de Sitter group and equations in the five-dimensional approach. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 360-382
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a7/
%G ru
%F TMF_1970_4_3_a7
W. I. Fushchych. Representations of the complete inhomogeneous de Sitter group and equations in the five-dimensional approach. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 3, pp. 360-382. http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a7/

[1] G. C. Hegerfeldt, J. Henning, Fort. Phys., 16 (1968), 9

[2] Yu. B. Rumer, Issledovaniya po 5-optike, Fizmatgiz, 1956 | MR | Zbl

[3] G. A. Sokolik, Gruppovye metody v teorii elementarnykh chastits, Atomizdat, 1965 | MR | Zbl

[4] V. I. Fuschich, Ukr. fiz. zh., 12 (1967), 741; 13 (1968), 363

[5] V. I. Fushchich, I. Yu. Krivsky, Nucl. Phys., B7 (1968), 79 ; B14 (1969), 573 | DOI | DOI | MR

[6] V. I. Fuschich, I. Yu. Krivskii, Preprint ITF-72, AN USSR, Kiev, 1968

[7] S. P. Rosen, J. Math. Phys., 9 (1968), 1593 | DOI | MR | Zbl

[8] V. I. Fuschich, Preprint ITF-17, AN USSR, Kiev, 1969

[9] E. P. Wigner, Ann. Math., 40 (1939), 149 | DOI | MR | Zbl

[10] L. Foldy, Phys. Rev., 102 (Phys. Rev.), 568 | DOI | MR | Zbl

[11] Yu. M. Shirokov, ZhETF, 33 (1957), 1196 ; 34 (1958), 717 | Zbl | MR | Zbl

[12] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, 1958

[13] J. A. De Vos, J. Hilgervoord, Nucl. Phys., B1 (1967), 494 | DOI | Zbl

[14] R. C. Hwa, Nuovo Cim., 56A (1968), 107 | DOI | Zbl

[15] T. D. Newton, Ann. Math., 51 (1950), 730 | DOI | MR | Zbl

[16] A. A. Komar, L. M. Slad, TMF, 1 (1969), 50 | Zbl

[17] C. L. Hammer, R. H. Good, Phys. Rev., 108 (1957), 882 | DOI | MR | Zbl

[18] V. I. Fuschich, Ukr. fiz. zh., 8 (1966), 907

[19] M. M. Bakri, J. Math. Phys., 10 (1969), 289 | DOI | MR

[20] V. Bargman, E. Wigner, Proc. Nat. Acad. Sci., 34 (1948), 211 | DOI | MR | Zbl

[21] V. I. Fuschich, L. P. Sokur, Preprint ITF-33, AN USSR, Kiev, 1969

[22] Yu. M. Shirokov, ZhETF, 21 (1951), 748

[23] A. Sankaranarayanan, Nuovo Cim., 38 (1965), 1441 ; J. Rosen, P. Roman, J. Math. Phys., 7 (1966), 2072 | DOI | MR | Zbl | DOI | MR | Zbl