Vector states on algebras of observables and superselection rules
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 3, pp. 341-359 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The methods and results of Part I are used to give a new and complete mathematical formuiation of superselectionrules. This is done first for very simple “diehotomic” superselection rules and then for arbitrary rules. Three fundamental physical conditions are formulated that are equivalent to one another and, taken together, give the abstract definition of a superselection rule. A number of new features of superselection rules is revealed. The most important are the following: 1) the superselection operators in the general case belong to the center of the global algebra of observables $R$; 2) the phenomenon of superselection rules exists and possesses the complete set of necessary physical properties only for the class of theories with a sufficient set of pure vector states (this concept was introduced and studied in Part I). It is established which forms of “continuous” superselection rules are possible and which are impossible in a physical theory. A coheren superselection sector is defined as a factorial type I representation of $R$. A generalization of the principle of superposigon is formulated and it is proved that it is satisfied in a coherent sector.
@article{TMF_1970_4_3_a6,
     author = {V. N. Sushko and S. S. Horuzhy},
     title = {Vector states on algebras of observables and superselection rules},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {341--359},
     year = {1970},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a6/}
}
TY  - JOUR
AU  - V. N. Sushko
AU  - S. S. Horuzhy
TI  - Vector states on algebras of observables and superselection rules
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 341
EP  - 359
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a6/
LA  - ru
ID  - TMF_1970_4_3_a6
ER  - 
%0 Journal Article
%A V. N. Sushko
%A S. S. Horuzhy
%T Vector states on algebras of observables and superselection rules
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 341-359
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a6/
%G ru
%F TMF_1970_4_3_a6
V. N. Sushko; S. S. Horuzhy. Vector states on algebras of observables and superselection rules. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 3, pp. 341-359. http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a6/

[1] V. N. Sushko, S. S. Khoruzhii, TMF, 4 (1970), 171 | Zbl

[2] R. Spitzer, Nucl. Phys., 47 (1963), 367 ; 87 (1967), 823 | DOI | MR | DOI

[3] E. Lubkin, Ann. Phys., 56 (1970), 69 | DOI | MR | Zbl

[4] A. S. Wightman, Nuovo Cim. Suppl., 14 (1959), 181 | MR

[5] J. M. Jauch, Helv. Phys. Acta, 33 (1960), 711 | MR | Zbl

[6] J. M. Jauch, B. Misra, Helv. Phys. Acta, 34 (1961), 699 | MR | Zbl

[7] A. Galindo, A. Morales, R. Nunez-Lagos, J. Math. Phys., 3 (1962), 324 | DOI | MR | Zbl

[8] C. G. Wick, A. S. Wightman, E. P. Wigner, Phys. Rev., 88 (1952), 101 | DOI | MR | Zbl

[9] G. Hegerfeldt, K. Kraus, E. P. Wigner, J. Math. Phys., 8 (1967), 2029 | DOI | MR

[10] S. G. Kharatyan, YaF, 9 (1969), 1305 | MR

[11] J. Antoine, J. Math. Phys., 10 (1969), 54 | MR

[12] M. A. Naimark, Normirovannye koltsa, «Nauka», 1968 | MR | Zbl

[13] V. Bargmann, Ann. Math., 59 (1954), 1 | DOI | MR | Zbl

[14] G. Emch, M. Guenin, J. Math. Phys., 7 (1966), 915 | DOI | MR

[15] J. Dixmier, Les algèbres d'operateurs dans l'espace Hilbertien (les algèbres de von Neumann), Paris, 1957 | MR

[16] S. Doplicher, R. Haag, J. E. Roberts, Comm. Math. Phys., 13 (1969), 1 | DOI | MR | Zbl

[17] O. W. Greenberg, A. Messiah, Phys. Rev., 136B (1964), 248 | MR

[18] R. Haag, R. V. Kadison, D. Kastler, Comm. Math. Phys., 16 (1970), 81 | DOI | MR | Zbl

[19] R. Haag, D. Kastler, J. Math. Phys., 5 (1964), 848 | DOI | MR | Zbl