Representations of the Lorentz group and generalization of helicity states
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 3, pp. 328-340

Voir la notice de l'article provenant de la source Math-Net.Ru

The principal series of unitary representations of the Lorentz group is obtained by complexification of the three-dimensional group of rotations and by the solution of the eigenvalue equation for the Casimir operators. The representation obtained can be expressed simply in terms of $D$ functions (of the first and second kind) of the group of rotations. The harmonic analysis of the functions on the group is discussed. Spherical functions on a two-dimensional complex sphere are constructed.
@article{TMF_1970_4_3_a5,
     author = {Ya. A. Smorodinskii and M. Khusar},
     title = {Representations of the {Lorentz} group and generalization of helicity states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {328--340},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a5/}
}
TY  - JOUR
AU  - Ya. A. Smorodinskii
AU  - M. Khusar
TI  - Representations of the Lorentz group and generalization of helicity states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 328
EP  - 340
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a5/
LA  - ru
ID  - TMF_1970_4_3_a5
ER  - 
%0 Journal Article
%A Ya. A. Smorodinskii
%A M. Khusar
%T Representations of the Lorentz group and generalization of helicity states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 328-340
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a5/
%G ru
%F TMF_1970_4_3_a5
Ya. A. Smorodinskii; M. Khusar. Representations of the Lorentz group and generalization of helicity states. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 3, pp. 328-340. http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a5/