Representations of the Lorentz group and generalization of helicity states
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 3, pp. 328-340 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The principal series of unitary representations of the Lorentz group is obtained by complexification of the three-dimensional group of rotations and by the solution of the eigenvalue equation for the Casimir operators. The representation obtained can be expressed simply in terms of $D$ functions (of the first and second kind) of the group of rotations. The harmonic analysis of the functions on the group is discussed. Spherical functions on a two-dimensional complex sphere are constructed.
@article{TMF_1970_4_3_a5,
     author = {Ya. A. Smorodinskii and M. Khusar},
     title = {Representations of the {Lorentz} group and generalization of helicity states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {328--340},
     year = {1970},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a5/}
}
TY  - JOUR
AU  - Ya. A. Smorodinskii
AU  - M. Khusar
TI  - Representations of the Lorentz group and generalization of helicity states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 328
EP  - 340
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a5/
LA  - ru
ID  - TMF_1970_4_3_a5
ER  - 
%0 Journal Article
%A Ya. A. Smorodinskii
%A M. Khusar
%T Representations of the Lorentz group and generalization of helicity states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 328-340
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a5/
%G ru
%F TMF_1970_4_3_a5
Ya. A. Smorodinskii; M. Khusar. Representations of the Lorentz group and generalization of helicity states. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 3, pp. 328-340. http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a5/

[1] A. Z. Dolginov, ZhETF, 30 (1956), 746 ; 3 (1956), 589 ; А. З. Долгинов, И. Н. Топтыгин, ЖЭТФ, 35 (1958), 798; 37 (1959), 1441 ; 8 (1958), 550 ; 10 (1959), 1022 | MR | Zbl | MR | MR | Zbl | Zbl

[2] N. Ya. Vilenkin, Ya. A. Smorodinskii, ZhETF, 19 (1964), 1209 | MR

[3] M. A. Liberman, Ya. A. Smorodinskii, M. B. Sheftel, YaF, 7 (1968), 202

[4] G. I. Kuznetsov, A. A. Makarov, M. A. Liberman, Ya. A. Smorodinskii, YaF, 10 (1969), 644 | MR

[5] S. Ström, Arkiv för Fysik, 29 (1965), 467 | MR | Zbl

[6] M. Huszar, Ya. A. Smorodinsky, Preprint E2-4225, OIYaI

[7] M. Andrews, J. Gunson, J. Math. Phys., 5 (1964), 1391 | DOI | MR

[8] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, «Nauka», 1965 | MR

[9] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Obobschennye funktsii. T 5. Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, GIFML, 1962 | MR

[10] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, glava 1, «Nauka», 1965 | MR

[11] A. Sebestyén, K. Szegö, K. Tóth, Preprint of the Central Research Institute of Physics, No 18/1968, Budapest