Representations of the Lorentz group and generalization of helicity states
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 3, pp. 328-340
Voir la notice de l'article provenant de la source Math-Net.Ru
The principal series of unitary representations of the Lorentz group is obtained by complexification of the three-dimensional group of rotations and by the solution of the eigenvalue
equation for the Casimir operators. The representation obtained can be expressed simply
in terms of $D$ functions (of the first and second kind) of the group of rotations. The harmonic
analysis of the functions on the group is discussed. Spherical functions on a two-dimensional
complex sphere are constructed.
@article{TMF_1970_4_3_a5,
author = {Ya. A. Smorodinskii and M. Khusar},
title = {Representations of the {Lorentz} group and generalization of helicity states},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {328--340},
publisher = {mathdoc},
volume = {4},
number = {3},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a5/}
}
TY - JOUR AU - Ya. A. Smorodinskii AU - M. Khusar TI - Representations of the Lorentz group and generalization of helicity states JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1970 SP - 328 EP - 340 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a5/ LA - ru ID - TMF_1970_4_3_a5 ER -
Ya. A. Smorodinskii; M. Khusar. Representations of the Lorentz group and generalization of helicity states. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 3, pp. 328-340. http://geodesic.mathdoc.fr/item/TMF_1970_4_3_a5/