Theory of a degenerate Fermi gas in an external field
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 2, pp. 239-245
Cet article a éte moissonné depuis la source Math-Net.Ru
The variation in the density $\delta\rho(x,E)$ of a degenerate ideal Fermi gas is found for the case of a localized variation of an external field $V(x)$. It is shown that the continuous dependence of $\delta\rho$ on $\delta V$ is not violated if discrete levels far from the Fermi level $E$ arise (or disappear). In particular, if there is ,an energy gap $(E_1, E_2)$ and $E_1, the occurrence of discrete levels does not reduce the rate of exponential decrease of $\delta\rho(x,E)$ as $|x|\to\infty$.
@article{TMF_1970_4_2_a9,
author = {\`E. \`E. Shnol'},
title = {Theory of a~degenerate {Fermi} gas in an~external field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {239--245},
year = {1970},
volume = {4},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a9/}
}
È. È. Shnol'. Theory of a degenerate Fermi gas in an external field. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 2, pp. 239-245. http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a9/
[1] Ya. B. Zeldovich, E. M. Rabinovich, ZhETF, 37 (1959), 1296 | MR | Zbl
[2] S. S. Gerštein, Ya. B. Zel'dovich, Lett. Nuovo Cim., 1 (1969), 835 | DOI
[3] Dzh. Zaiman, Printsipy teorii tverdogo tela, «Mir», 1966
[4] L. D. Faddeev, Vestn. LGU, 1956, no. 7, 126 ; Вестн. ЛГУ, 1957, No 7, 164 | MR | MR | Zbl
[5] V. S. Buslaev, DAN SSSR, 143 (1962), 1067 | MR | Zbl
[6] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, 1963 | MR
[7] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, 1965 | MR
[8] A. Ya. Povzner, Mat. sbornik, 32 (1953), 109 ; ДАН СССР, 104 (1955), 360 | MR | Zbl | MR | Zbl