Theory of a degenerate Fermi gas in an external field
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 2, pp. 239-245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The variation in the density $\delta\rho(x,E)$ of a degenerate ideal Fermi gas is found for the case of a localized variation of an external field $V(x)$. It is shown that the continuous dependence of $\delta\rho$ on $\delta V$ is not violated if discrete levels far from the Fermi level $E$ arise (or disappear). In particular, if there is ,an energy gap $(E_1, E_2)$ and $E_1, the occurrence of discrete levels does not reduce the rate of exponential decrease of $\delta\rho(x,E)$ as $|x|\to\infty$.
@article{TMF_1970_4_2_a9,
     author = {\`E. \`E. Shnol'},
     title = {Theory of a~degenerate {Fermi} gas in an~external field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {239--245},
     year = {1970},
     volume = {4},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a9/}
}
TY  - JOUR
AU  - È. È. Shnol'
TI  - Theory of a degenerate Fermi gas in an external field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 239
EP  - 245
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a9/
LA  - ru
ID  - TMF_1970_4_2_a9
ER  - 
%0 Journal Article
%A È. È. Shnol'
%T Theory of a degenerate Fermi gas in an external field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 239-245
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a9/
%G ru
%F TMF_1970_4_2_a9
È. È. Shnol'. Theory of a degenerate Fermi gas in an external field. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 2, pp. 239-245. http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a9/

[1] Ya. B. Zeldovich, E. M. Rabinovich, ZhETF, 37 (1959), 1296 | MR | Zbl

[2] S. S. Gerštein, Ya. B. Zel'dovich, Lett. Nuovo Cim., 1 (1969), 835 | DOI

[3] Dzh. Zaiman, Printsipy teorii tverdogo tela, «Mir», 1966

[4] L. D. Faddeev, Vestn. LGU, 1956, no. 7, 126 ; Вестн. ЛГУ, 1957, No 7, 164 | MR | MR | Zbl

[5] V. S. Buslaev, DAN SSSR, 143 (1962), 1067 | MR | Zbl

[6] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, 1963 | MR

[7] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, 1965 | MR

[8] A. Ya. Povzner, Mat. sbornik, 32 (1953), 109 ; ДАН СССР, 104 (1955), 360 | MR | Zbl | MR | Zbl