The Elliott scheme and its generalization
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 2, pp. 208-215
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the symmetry propertiea of the quadrupole interaction in the field of a spherically symmetric oscillator. The noninvarlance group of the Hamiltonian describing this interaction is found to be $SO(3,2)$ for a two-dimensional and $Sp(3,3)$ for a three-dlmonslonal operator. It is shown that if vibrations of the generalized model are present at all in the standard model with pairing and quadrupole forces they only appear as a result of competition between these forces.
@article{TMF_1970_4_2_a5,
author = {G. N. Afanas'ev},
title = {The {Elliott} scheme and its generalization},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {208--215},
year = {1970},
volume = {4},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a5/}
}
G. N. Afanas'ev. The Elliott scheme and its generalization. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 2, pp. 208-215. http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a5/
[1] J. P. Elliot, Proc. Roy. Soc. (London), A245 (1958), 128 | DOI | MR | Zbl
[2] V. G. Soloviev, Nucl. Phys., 69 (1965), 1 | DOI
[3] R. A. Sorensen, Proc. Nuclear Structure Dubna Symposium (1968), IAEA, Vienna, 1968
[4] M. A. B. Beg, H. Ruegg, J. Math. Phys., 6 (1965), 677 | DOI | MR | Zbl
[5] V. Bargmann, M. Moshinsky, Nucl. Phys., 23 (1961), 177 | DOI | MR | Zbl
[6] I. G. Kurijan, N. Mukunda, E. C. G. Sudarshan, Commun. math. Phys., 8 (1968), 204 | DOI | MR
[7] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, 1958
[8] G. Rakavy, Nucl. Phys., 4 (1957), 289 | DOI
[9] S. T. Belyaev, Mat. Fys. Vid. Selsk., 31:11 (1959) | MR | Zbl
[10] H. Lipkin, Nucl. Phys., 26 (1961), 147 | DOI