Vector states on algebras of observables and superselection rules I. Vector states and Hilbert space
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 2, pp. 171-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A detailed investigation is made of vector states on an arbitrary reducible $W^*$-algebra of observables $R$. The properties of vector states (purity, subordination, etc.) are reformulated and studied in terms of their “preimages”, i.e., the sets of vectors in the Hilbert space $\mathscr H$ corresponding to one and the same vector state. The properties of preimages of pure vector states are described exhaustively. A special class of quantum theories is studied for which $\mathscr H$ coincides with the closure $\mathscr H$ of the linear hull of the set of all vectors representing pure states. It is proved that a theory belongs to this class if and only if $R$ is a direct sum of type I factors. The structure of $R$ and $\mathscr H$ is analyzed exhaustively for this class of theories, i.e., different representations of $\mathscr H$ are given; the number of pure vector states and the number of subspaces that are irreducible under $R$ are determined. The connection between the results of the present paper and the formalism of the abstract algebraic approach is established.
@article{TMF_1970_4_2_a2,
     author = {V. N. Sushko and S. S. Horuzhy},
     title = {Vector states on algebras of observables and superselection rules {I.~Vector} states and {Hilbert} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {171--195},
     year = {1970},
     volume = {4},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a2/}
}
TY  - JOUR
AU  - V. N. Sushko
AU  - S. S. Horuzhy
TI  - Vector states on algebras of observables and superselection rules I. Vector states and Hilbert space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 171
EP  - 195
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a2/
LA  - ru
ID  - TMF_1970_4_2_a2
ER  - 
%0 Journal Article
%A V. N. Sushko
%A S. S. Horuzhy
%T Vector states on algebras of observables and superselection rules I. Vector states and Hilbert space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 171-195
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a2/
%G ru
%F TMF_1970_4_2_a2
V. N. Sushko; S. S. Horuzhy. Vector states on algebras of observables and superselection rules I. Vector states and Hilbert space. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 2, pp. 171-195. http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a2/

[1] J. Dixmier, Les algèbres d'opérateurs dans l'éspace Hilbertien (les algèbres de von Neumann), Paris, 1957 | MR

[2] J. Dixmier, Les $C^*$ algèbres et leurs representations, Paris, 1964 | MR

[3] M. A. Naimark, Normirovannye koltsa, «Nauka», 1968 | MR | Zbl

[4] R. V. Kadison, Trans. Amer. Math. Soc., 103 (1962), 304 | DOI | MR | Zbl

[5] A. S. Vaitman, R. F. Striter, $PCT$, spin i statistika i vse takoe, «Nauka», 1967

[6] S. G. Kharatyan, YaF, 9 (1969), 1305 | MR

[7] A. Galindo, A. Morales, R. Nunez-Lagos, J. Math. Phys., 3 (1962), 324 | DOI | MR | Zbl

[8] S. Doplicher, R. Haag, J. E. Roberts, Commun. Math. Phys., 13 (1969), 1 | DOI | MR | Zbl

[9] R. Haag, R. V. Kadison, D. Kastler, Commun. Math. Phys., 16 (1970), 81 | DOI | MR | Zbl

[10] N. M. Hugenholtz, Axiomatic approach in quantum field theory and manybody problem, vol. IB, Wroclaw, 1968 | Zbl