Quantization of an essentially nonlinear field
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 2, pp. 145-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An essentially nonlinear field is understood as a field that satisfies an equation with characteristics depending on the field itself or Its derivatives. We first consider the simplest example of quantization of an essentially nonlinear system wlth a single degree of freedom. The quantization of an essentially nonlinear field of the Born–Infeld type is then dlscussed.
@article{TMF_1970_4_2_a0,
     author = {D. I. Blokhintsev},
     title = {Quantization of an~essentially nonlinear field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {145--152},
     year = {1970},
     volume = {4},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a0/}
}
TY  - JOUR
AU  - D. I. Blokhintsev
TI  - Quantization of an essentially nonlinear field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 145
EP  - 152
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a0/
LA  - ru
ID  - TMF_1970_4_2_a0
ER  - 
%0 Journal Article
%A D. I. Blokhintsev
%T Quantization of an essentially nonlinear field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 145-152
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a0/
%G ru
%F TMF_1970_4_2_a0
D. I. Blokhintsev. Quantization of an essentially nonlinear field. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 2, pp. 145-152. http://geodesic.mathdoc.fr/item/TMF_1970_4_2_a0/

[1] M. Born, Proc. Roy. Soc., A 143 (1934), 410 | DOI | Zbl

[2] D. Blokhintsev, DAN SSSR, 32 (1952), 553

[3] D. Blokhintsev, V. Orlov, ZhETF, 25 (1953), 503

[4] B. Barbashov, N. A. Chernikov, ZhETF, 51 (1966), 658

[5] D. I. Blohincev, Nuovo Cim., Suppl. 3, ser. X, 1956, 629 | DOI | MR

[6] D. I. Blokhintsev, DAN SSSR, 168 (1966), 774

[7] Dao Vong Dyk, Nguen Van Kheu, Preprint R2-4605, OIYaI, 1969

[8] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, «Mir», 1968