Chain of equations for two-time temperature-dependent Green's functions
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 1, pp. 66-75
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A study is made of the chain of equations for the re arded-advanced temperature-dependent Green's functions in the general case of a normal Fermi system with a central pair interaction. It is fotmd to be convenient to introduce a representation for the “higher” Green's functions in terms of the so-called “regular” parts of the functions and the corresponding mean values of lower order and set up a system of coupled integral equations for the “regular” parts of the Green's functions. These equations enable one to establish directly which terms of the system are the most important for a given type of interaction. Specific examples considered are a system with a Coulomb interaction and a Fermi gas
with short-range repulsive forces between the particles.
			
            
            
            
          
        
      @article{TMF_1970_4_1_a8,
     author = {V. D. Ozrin},
     title = {Chain of equations for two-time temperature-dependent {Green's} functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {66--75},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a8/}
}
                      
                      
                    V. D. Ozrin. Chain of equations for two-time temperature-dependent Green's functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 1, pp. 66-75. http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a8/
