Chain of equations for two-time temperature-dependent Green's functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 1, pp. 66-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the chain of equations for the re arded-advanced temperature-dependent Green's functions in the general case of a normal Fermi system with a central pair interaction. It is fotmd to be convenient to introduce a representation for the “higher” Green's functions in terms of the so-called “regular” parts of the functions and the corresponding mean values of lower order and set up a system of coupled integral equations for the “regular” parts of the Green's functions. These equations enable one to establish directly which terms of the system are the most important for a given type of interaction. Specific examples considered are a system with a Coulomb interaction and a Fermi gas with short-range repulsive forces between the particles.
@article{TMF_1970_4_1_a8,
     author = {V. D. Ozrin},
     title = {Chain of equations for two-time temperature-dependent {Green's} functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {66--75},
     year = {1970},
     volume = {4},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a8/}
}
TY  - JOUR
AU  - V. D. Ozrin
TI  - Chain of equations for two-time temperature-dependent Green's functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 66
EP  - 75
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a8/
LA  - ru
ID  - TMF_1970_4_1_a8
ER  - 
%0 Journal Article
%A V. D. Ozrin
%T Chain of equations for two-time temperature-dependent Green's functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 66-75
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a8/
%G ru
%F TMF_1970_4_1_a8
V. D. Ozrin. Chain of equations for two-time temperature-dependent Green's functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 1, pp. 66-75. http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a8/

[1] D. N. Zubarev, UFN, 71 (1960), 71 | DOI | MR

[2] H. Suhl, N. Werthamer, Phys. Rev., 122 (1961), 359 | DOI | MR | Zbl

[3] N. N. Bogolyubov, ml., Vestn. MGU, ser. fiz., astronom., 1966, no. 1, 94

[4] T. Matzubara, Progr. Theor. Phys., 14 (1955), 351 | DOI | MR

[5] C. Bloch, C. DeDominicis, Nucl. Phys., 7 (1958), 459 | DOI | Zbl

[6] V. D. Ozrin, Vestn. MGU, ser. fiz., astronom., 1968, no. 6, 9

[7] V. M. Galitskii, ZhETF, 34 (1958), 151 | MR

[8] H. W. Wyld, Jr., B. D. Fried, Ann. Phys., 23 (1963), 374 | DOI | MR | Zbl