Chain of equations for two-time temperature-dependent Green's functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 1, pp. 66-75
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the chain of equations for the re arded-advanced temperature-dependent Green's functions in the general case of a normal Fermi system with a central pair interaction. It is fotmd to be convenient to introduce a representation for the “higher” Green's functions in terms of the so-called “regular” parts of the functions and the corresponding mean values of lower order and set up a system of coupled integral equations for the “regular” parts of the Green's functions. These equations enable one to establish directly which terms of the system are the most important for a given type of interaction. Specific examples considered are a system with a Coulomb interaction and a Fermi gas with short-range repulsive forces between the particles.
@article{TMF_1970_4_1_a8,
author = {V. D. Ozrin},
title = {Chain of equations for two-time temperature-dependent {Green's} functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {66--75},
year = {1970},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a8/}
}
V. D. Ozrin. Chain of equations for two-time temperature-dependent Green's functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 1, pp. 66-75. http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a8/
[1] D. N. Zubarev, UFN, 71 (1960), 71 | DOI | MR
[2] H. Suhl, N. Werthamer, Phys. Rev., 122 (1961), 359 | DOI | MR | Zbl
[3] N. N. Bogolyubov, ml., Vestn. MGU, ser. fiz., astronom., 1966, no. 1, 94
[4] T. Matzubara, Progr. Theor. Phys., 14 (1955), 351 | DOI | MR
[5] C. Bloch, C. DeDominicis, Nucl. Phys., 7 (1958), 459 | DOI | Zbl
[6] V. D. Ozrin, Vestn. MGU, ser. fiz., astronom., 1968, no. 6, 9
[7] V. M. Galitskii, ZhETF, 34 (1958), 151 | MR
[8] H. W. Wyld, Jr., B. D. Fried, Ann. Phys., 23 (1963), 374 | DOI | MR | Zbl