Method of functional integration and an eikonal approximation for potential scattering amplitudes
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 1, pp. 22-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behavior of the potential scattering amplitude of hlgh-energy particles is studied by the functional integration in technique. An eikonal approximation, is found that dlffers from the usual approximation. The connection between this representation and the elkonal approximation in a quantum field model is discussed.
@article{TMF_1970_4_1_a4,
     author = {V. N. Pervushin},
     title = {Method of functional integration and an~eikonal approximation for potential scattering amplitudes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {22--32},
     year = {1970},
     volume = {4},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a4/}
}
TY  - JOUR
AU  - V. N. Pervushin
TI  - Method of functional integration and an eikonal approximation for potential scattering amplitudes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 22
EP  - 32
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a4/
LA  - ru
ID  - TMF_1970_4_1_a4
ER  - 
%0 Journal Article
%A V. N. Pervushin
%T Method of functional integration and an eikonal approximation for potential scattering amplitudes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 22-32
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a4/
%G ru
%F TMF_1970_4_1_a4
V. N. Pervushin. Method of functional integration and an eikonal approximation for potential scattering amplitudes. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 1, pp. 22-32. http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a4/

[1] R. J. Glauber, Lectures in Theoretical Physics, 1, N. Y., 1959, p. 315 | MR | Zbl

[2] W. Czysz, K. L. Lesniak, Phys. Lett., 24B (1967), 227 | DOI

[3] S. P. Kuleshov, V. A. Matveev, A. N. Sissakian, JINR Comm. E2-4455, 1969

[4] P. S. Saxon, L. I. Schiff, Nuovo Cim., 6 (1957), 614 | DOI | MR | Zbl

[5] L. I. Schiff, Phys. Rev., 103 (1956), 443 | DOI | MR | Zbl

[6] V. R. Garsevanishvili, V. A. Matveev, L. A. Slepchenko, A. N. Tavkhelidze, Phys. Lett., 29B (1969), 191 | DOI

[7] B. M. Barbashov, S. P. Kuleshov, V. A. Matveev, A. N. Sissakian, JINR Comm. E2-4692, 1969

[8] H. D. I. Abarbanel, C. Itzykson, Phys. Rev. Lett., 23 (1969), 53 | DOI | MR

[9] I. V. Andreev, ZhETF, 58 (1970), 257

[10] B. M. Barbashov, ZhETF, 48 (1965), 607 | MR | Zbl

[11] G. A. Milekhin, E. S. Fradkin, ZhETF, 45 (1963), 1926

[12] I. M. Gelfand, A. M. Yaglom, UMN, 11 (1956), 77 | MR | Zbl

[13] L. I. Schiff, Phys. Rev., 176 (1968), 1390 | DOI

[14] R. Feynman, M. Gell-Mann, Phys. Rev., 109 (1958), 193 | DOI | MR | Zbl

[15] R. Feynman, Phys. Rev., 84 (1951), 108 | DOI | MR | Zbl

[16] M. Levy, I. Sucher, Technical report No 983, University of Maryland, 1969