Duality and finite energy sum rules
Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 1, pp. 11-17

Voir la notice de l'article provenant de la source Math-Net.Ru

The derivation of a Venezlanootype representation is investigated on the basis of an auxiliary integral parametric representation of scattering amplitudes satisfying unsubtracted dispersion relations.
@article{TMF_1970_4_1_a2,
     author = {V. A. Matveev and D. Ts. Stoyanov and A. N. Tavkhelidze},
     title = {Duality and finite energy sum rules},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {11--17},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a2/}
}
TY  - JOUR
AU  - V. A. Matveev
AU  - D. Ts. Stoyanov
AU  - A. N. Tavkhelidze
TI  - Duality and finite energy sum rules
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 11
EP  - 17
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a2/
LA  - ru
ID  - TMF_1970_4_1_a2
ER  - 
%0 Journal Article
%A V. A. Matveev
%A D. Ts. Stoyanov
%A A. N. Tavkhelidze
%T Duality and finite energy sum rules
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 11-17
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a2/
%G ru
%F TMF_1970_4_1_a2
V. A. Matveev; D. Ts. Stoyanov; A. N. Tavkhelidze. Duality and finite energy sum rules. Teoretičeskaâ i matematičeskaâ fizika, Tome 4 (1970) no. 1, pp. 11-17. http://geodesic.mathdoc.fr/item/TMF_1970_4_1_a2/