Investigation of Feynman integrals by homological methods
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 3, pp. 405-419
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A study is made of the integral over $l$-dimensional sphere $\overline\Sigma$ of a meromorphic differential form that has poles on $m$ hyperplanes $\overline P_j$. This integral is a many-valued analytic function with discontinuities across the Landau variety $L$. A study is made of the discontinuities of the integral across $L$ and also the representation of $\pi_1(C^{m(l+1)}-L)$ on the homology group $H_{l^c}(\overline{\Sigma}-\displaystyle\bigcup_{j=1}^m(\overline{\Sigma}\bigcap\overline{P_j}))$ for the case $m=l+1, l+2$.
			
            
            
            
          
        
      @article{TMF_1970_3_3_a9,
     author = {V. A. Golubeva},
     title = {Investigation of {Feynman} integrals by homological methods},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {405--419},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a9/}
}
                      
                      
                    V. A. Golubeva. Investigation of Feynman integrals by homological methods. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 3, pp. 405-419. http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a9/
