Investigation of Feynman integrals by homological methods
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 3, pp. 405-419

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the integral over $l$-dimensional sphere $\overline\Sigma$ of a meromorphic differential form that has poles on $m$ hyperplanes $\overline P_j$. This integral is a many-valued analytic function with discontinuities across the Landau variety $L$. A study is made of the discontinuities of the integral across $L$ and also the representation of $\pi_1(C^{m(l+1)}-L)$ on the homology group $H_{l^c}(\overline{\Sigma}-\displaystyle\bigcup_{j=1}^m(\overline{\Sigma}\bigcap\overline{P_j}))$ for the case $m=l+1, l+2$.
@article{TMF_1970_3_3_a9,
     author = {V. A. Golubeva},
     title = {Investigation of {Feynman} integrals by homological methods},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {405--419},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a9/}
}
TY  - JOUR
AU  - V. A. Golubeva
TI  - Investigation of Feynman integrals by homological methods
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 405
EP  - 419
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a9/
LA  - ru
ID  - TMF_1970_3_3_a9
ER  - 
%0 Journal Article
%A V. A. Golubeva
%T Investigation of Feynman integrals by homological methods
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 405-419
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a9/
%G ru
%F TMF_1970_3_3_a9
V. A. Golubeva. Investigation of Feynman integrals by homological methods. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 3, pp. 405-419. http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a9/