Method of generating functions for a~quantum oscillator
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 3, pp. 377-391
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A method of generating functions is developed for studying a quantum oscillator with a variable frequency $\omega(t)$ subject to the influence of an external force $f(t)$. The method is used to obtain an explicit expression for the transition probabilities $w_{mn}$ between states $|n,\omega_{-}\rangle$ and $|m,\omega_{+}\rangle$, containing a definite number of quanta at the start $(n)$ and end $(m)$ of the process. The Heisenberg representation is discussed and the associated geometrical interpretation of the dynamical variables on the phase plane. By means of the phase plane, formulas are obtained for 
$w_{mn}$ in the quasiclassical limit (strongly degenerate oscillator for which $m,n\gg 1$). The application of the method of generating functions to the problem of the relaxation of a quantum oscillator interacting with a thermostat is discussed.
			
            
            
            
          
        
      @article{TMF_1970_3_3_a7,
     author = {A. M. Perelomov and V. S. Popov},
     title = {Method of generating functions for a~quantum oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {377--391},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a7/}
}
                      
                      
                    A. M. Perelomov; V. S. Popov. Method of generating functions for a~quantum oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 3, pp. 377-391. http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a7/
