Method of generating functions for a quantum oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 3, pp. 377-391 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method of generating functions is developed for studying a quantum oscillator with a variable frequency $\omega(t)$ subject to the influence of an external force $f(t)$. The method is used to obtain an explicit expression for the transition probabilities $w_{mn}$ between states $|n,\omega_{-}\rangle$ and $|m,\omega_{+}\rangle$, containing a definite number of quanta at the start $(n)$ and end $(m)$ of the process. The Heisenberg representation is discussed and the associated geometrical interpretation of the dynamical variables on the phase plane. By means of the phase plane, formulas are obtained for $w_{mn}$ in the quasiclassical limit (strongly degenerate oscillator for which $m,n\gg 1$). The application of the method of generating functions to the problem of the relaxation of a quantum oscillator interacting with a thermostat is discussed.
@article{TMF_1970_3_3_a7,
     author = {A. M. Perelomov and V. S. Popov},
     title = {Method of generating functions for a~quantum oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {377--391},
     year = {1970},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a7/}
}
TY  - JOUR
AU  - A. M. Perelomov
AU  - V. S. Popov
TI  - Method of generating functions for a quantum oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 377
EP  - 391
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a7/
LA  - ru
ID  - TMF_1970_3_3_a7
ER  - 
%0 Journal Article
%A A. M. Perelomov
%A V. S. Popov
%T Method of generating functions for a quantum oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 377-391
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a7/
%G ru
%F TMF_1970_3_3_a7
A. M. Perelomov; V. S. Popov. Method of generating functions for a quantum oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 3, pp. 377-391. http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a7/

[1] R. P. Feynman, Phys. Rev., 80 (1950), 440 ; 84 (1951), 108 | DOI | MR | Zbl | DOI | MR | Zbl

[2] J. Schwinger, Phys. Rev., 91 (1953), 728 | DOI | MR | Zbl

[3] K. Husimi, Progr. Theor. Phys., 9 (1953), 381 | DOI | MR | Zbl

[4] V. S. Popov, A. M. Perelomov, ZhETF, 56 (1969), 1375

[5] A. M. Perelomov, V. S. Popov, TMF, 1 (1969), 360 | MR

[6] D. Poia, Matematika i pravdopodobnye rassuzhdeniya, IL, 1957

[7] R. J. Glauber, Phys. Rev., 130 (1963), 2529 | DOI | MR

[8] J. R. Klauder, E. C. G. Sudarshan, Fundamentals of Quantum Optics, Benjamin, N. Y., 1968 | MR

[9] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, IL, 1966 | MR

[10] N. N. Bogolyubov, Vestn. MGU, 1947, no. 7, 43 | MR

[11] B. Ya. Zeldovich, A. M. Perelomov, V. S. Popov, ZhETF, 55 (1968), 589; 57 (1969), 196

[12] A. A. Belavin, B. Ya. Zeldovich, A. M. Perelomov, V. S. Popov, ZhETF, 56 (1969), 264