Unitarity conditions for a many-body system at zero temperature
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 3, pp. 420-434 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Unitarity conditions for the Green's functions and vertex parts are derived and discussed for the zero-temperature case. The question whether the intermediate states can be described by means of quasiparticles is discussed in detail.
@article{TMF_1970_3_3_a10,
     author = {S. L. Ginzburg and S. V. Maleev},
     title = {Unitarity conditions for a~many-body system at zero temperature},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {420--434},
     year = {1970},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a10/}
}
TY  - JOUR
AU  - S. L. Ginzburg
AU  - S. V. Maleev
TI  - Unitarity conditions for a many-body system at zero temperature
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 420
EP  - 434
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a10/
LA  - ru
ID  - TMF_1970_3_3_a10
ER  - 
%0 Journal Article
%A S. L. Ginzburg
%A S. V. Maleev
%T Unitarity conditions for a many-body system at zero temperature
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 420-434
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a10/
%G ru
%F TMF_1970_3_3_a10
S. L. Ginzburg; S. V. Maleev. Unitarity conditions for a many-body system at zero temperature. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 3, pp. 420-434. http://geodesic.mathdoc.fr/item/TMF_1970_3_3_a10/

[1] R. J. Eden, P. V. Landshoff, D. I. Olive, J. C. Polkinghorne, The Analytic $S$-Matrix, Cambridge University Press, 1968 | MR

[2] Dzh. Chyu, Analiticheskaya teoriya $S$-matritsy, «Mir», 1968

[3] A. A. Migdal, ZhETF, 55 (1968), 1964

[4] A. M. Polyakov, ZhETF, 55 (1968), 1026

[5] H. Suhl, D. Wong, Physics, 3 (1967), 17

[6] S. V. Maleev, ZhETF, 51 (1966), 1940

[7] S. L. Ginzburg, S. V. Maleev, ZhETF, 55 (1968), 1483

[8] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, 1962 | MR | Zbl

[9] S. V. Maleev, ZhETF, 41 (1961), 1675 | Zbl

[10] S. L. Ginzburg, ZhETF, 46 (1964), 905 | MR

[11] M. Goldberger, K. Vatson, Teoriya stolknovenii, », 1967

[12] V. N. Gribov, Lektsii po kvantovoi teorii polya, Preprint, ITEF, 1962 | MR

[13] A. B. Migdal, Teoriya konechnykh fermi-sistem i svoistva atomnykh yader, «Nauka», 1965

[14] V. N. Gribov, A. A. Migdal, YaF, 8 (1968), 1213

[15] N. D. Makedon, FTT (to appear)