Quasipotential method in the bound state problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 240-254
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of the general properties of the quasipotential equation for the wave function
of a bound system of particles with arbitrary spins. The normalization and orthogonalfty
conditions are obtained for these wave functions. An investigation is made of the matrix
elements of local operators between bound states.
@article{TMF_1970_3_2_a9,
author = {R. N. Faustov},
title = {Quasipotential method in the bound state problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {240--254},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a9/}
}
R. N. Faustov. Quasipotential method in the bound state problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 240-254. http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a9/