Problem of the $c\to\infty$ limit in the relativistic Schr\"odinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 191-196

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical procedure is given for investigating the regular degeneration of the solutions of the relativistic Schrödinger equation $$ [2c\sqrt{q^2+m^2c^2}-H_0^{\operatorname{rad}}-V(r)]\Psi_{ql}(r)=0 $$ into the solutions of the nonrelativlstle equation $$ \left[\hbar^2\frac{d^2}{dr^2}-\hbar^2\frac{l(l+1)}{r^2}-mV(r)+q^2\right]u_{ql}(r)=0 $$ for the $S$-wave case. The proposed method of a small parameter of the higher derivatives of a differential equation is applied to several concrete problems.
@article{TMF_1970_3_2_a5,
     author = {E. P. Zhidkov and V. G. Kadyshevskii and Yu. V. Katyshev},
     title = {Problem of the $c\to\infty$ limit in the relativistic {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {191--196},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a5/}
}
TY  - JOUR
AU  - E. P. Zhidkov
AU  - V. G. Kadyshevskii
AU  - Yu. V. Katyshev
TI  - Problem of the $c\to\infty$ limit in the relativistic Schr\"odinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 191
EP  - 196
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a5/
LA  - ru
ID  - TMF_1970_3_2_a5
ER  - 
%0 Journal Article
%A E. P. Zhidkov
%A V. G. Kadyshevskii
%A Yu. V. Katyshev
%T Problem of the $c\to\infty$ limit in the relativistic Schr\"odinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 191-196
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a5/
%G ru
%F TMF_1970_3_2_a5
E. P. Zhidkov; V. G. Kadyshevskii; Yu. V. Katyshev. Problem of the $c\to\infty$ limit in the relativistic Schr\"odinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 191-196. http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a5/