Asymptotic behavior of feynman graphs for quasielastic processes
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 171-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A simple prescription is given for finding the asymptotic behavior of any graph with integral spin in the $t$-channel from its topology for quasielastic small-angle scattering at high energies in the theory $L=g\overline{\psi}\gamma^5\psi\varphi+h\varphi^4$. If the graph has two-particle divisions in the $t$-channel, the recipe is very similar to that obtained, in [1-3] for elastic scattering. The asymptotic behavior of the graph is given by a power of the logarihm of $s$. For the contribution with posifive signature this power is essentially determined by the number of two-panicle divisions in the $t$-channel. “Pinch”-type contributions appear for negative signature. Graphs that do not have two-particle divisions in the $t$-channel decrease asymptotically as a power of $s$.
@article{TMF_1970_3_2_a2,
     author = {V. M. Budnev and I. F. Ginzburg},
     title = {Asymptotic behavior of feynman graphs for quasielastic processes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {171--177},
     year = {1970},
     volume = {3},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a2/}
}
TY  - JOUR
AU  - V. M. Budnev
AU  - I. F. Ginzburg
TI  - Asymptotic behavior of feynman graphs for quasielastic processes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 171
EP  - 177
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a2/
LA  - ru
ID  - TMF_1970_3_2_a2
ER  - 
%0 Journal Article
%A V. M. Budnev
%A I. F. Ginzburg
%T Asymptotic behavior of feynman graphs for quasielastic processes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 171-177
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a2/
%G ru
%F TMF_1970_3_2_a2
V. M. Budnev; I. F. Ginzburg. Asymptotic behavior of feynman graphs for quasielastic processes. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 171-177. http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a2/

[1] I. F. Ginzburg, A. V. Efremov, V. G. Serbo, Preprint TF-46, IM SO AN SSSR, 1968

[2] I. F. Ginzburg, A. V. Efremov, V. S. Serbo, YaF, 9 (1969), 451 | MR

[3] I. F. Ginzburg, V. G. Serbo, YaF, 9 (1969), 868 | MR

[4] A. V. Efremov, I. F. Ginzburg, V. G. Serbo, Preprint E2-4572, 1969, submitted to Nucl. Phys.

[5] V. M. Budnev, I. F. Ginzburg, V. G. Serbo, Preprint TF-54, IM SO AN SSSR, 1969

[6] K. A. Ter-Martirosyan, ZhETF, 44 (1963), 34; Е. Л. Фейнберг, Д. С. Чернавский, УФН

[7] A. Bialas, A. Eskreys, W. Kitter, S. Pokoroki, J. K. Tuominieni, L. Van Hove, Preprint CERN Ceneva Ref. TH., 1022-CERN, 1969 | Zbl

[8] H. Rudenstein, A. Veneziano, M. Virasoro, Phys. Rev., 167 (1968), 1441 | DOI

[9] K. A. Ter-Martirosyan, Mezhdunarodnaya shkola po fizike vysokikh energii (Popradske Pleso, Chekhoslovakiya), 1967