Asymptotic behavior of feynman graphs for quasielastic processes
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 171-177
Voir la notice de l'article provenant de la source Math-Net.Ru
A simple prescription is given for finding the asymptotic behavior of any graph with integral
spin in the $t$-channel from its topology for quasielastic small-angle scattering at high energies
in the theory $L=g\overline{\psi}\gamma^5\psi\varphi+h\varphi^4$. If the graph has two-particle divisions in the $t$-channel, the recipe is very similar to that obtained, in [1-3] for elastic scattering. The asymptotic behavior of the graph is given by a power of the logarihm of $s$. For the contribution with posifive signature this power is essentially determined by the number of two-panicle divisions in the $t$-channel. “Pinch”-type contributions appear for negative signature. Graphs that do not have two-particle divisions in the $t$-channel decrease asymptotically as a power of $s$.
@article{TMF_1970_3_2_a2,
author = {V. M. Budnev and I. F. Ginzburg},
title = {Asymptotic behavior of feynman graphs for quasielastic processes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {171--177},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a2/}
}
TY - JOUR AU - V. M. Budnev AU - I. F. Ginzburg TI - Asymptotic behavior of feynman graphs for quasielastic processes JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1970 SP - 171 EP - 177 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a2/ LA - ru ID - TMF_1970_3_2_a2 ER -
V. M. Budnev; I. F. Ginzburg. Asymptotic behavior of feynman graphs for quasielastic processes. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 171-177. http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a2/