Spectral representation of the two-point functions for fields describing composite particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 166-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Gelfand–Graev transformation is used to obtain an expansion of the four-polnt function of a scalar field (or the two-point function of a biloezl field) with respect to the two-point functions of fields that transform in accordance with the principal series of the unitary representations of the Lorentz group and conversely. It follows from this result that the infinitecomponent fields can be regarded as composite fields.
@article{TMF_1970_3_2_a1,
     author = {D. I. Blokhintsev and R. P. Zaikov},
     title = {Spectral representation of the two-point functions for fields describing composite particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {166--170},
     year = {1970},
     volume = {3},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a1/}
}
TY  - JOUR
AU  - D. I. Blokhintsev
AU  - R. P. Zaikov
TI  - Spectral representation of the two-point functions for fields describing composite particles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 166
EP  - 170
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a1/
LA  - ru
ID  - TMF_1970_3_2_a1
ER  - 
%0 Journal Article
%A D. I. Blokhintsev
%A R. P. Zaikov
%T Spectral representation of the two-point functions for fields describing composite particles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 166-170
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a1/
%G ru
%F TMF_1970_3_2_a1
D. I. Blokhintsev; R. P. Zaikov. Spectral representation of the two-point functions for fields describing composite particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 166-170. http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a1/

[1] G. Feldman, P. T. Matthews, Ann. Phys., 40 (1966), 19 ; Phys. Rev., 151 (1966), 1176 ; 154 (1967), 1241 ; C. Fronsdal, Phys. Rev., 156 (1967), 1653 ; E. Abers, I. T. Grodsky, R. E. Norton, Phys. Rev., 159 (1967), 1222 | DOI | Zbl | DOI | DOI | Zbl | DOI | DOI

[2] Dao Vong Dyk, Nguen Van Kheu, YaF, 6 (1967), 1861

[3] D. Tz. Stoyanov, I. T. Todorov, J. Math. Phys., 9 (1968), 2146 | DOI | Zbl

[4] R. Striter, A. S. Vaitman, $PCT$, spin i statistika i vse takoe, «Nauka», 1966

[5] I. T. Grodsky, R. F. Streater, Phys. Rev. Lett., 20 (1968), 695 | DOI | Zbl

[6] H. D. I. Abarbanel, Y. Frischman, Phys. Rev., 171 (1968), 1442 | DOI

[7] I. T. Todorov, R. P. Zaikov, Spectral representation of the covariant two point function and infinite component fields, with arbitrary mass spectrum, Internal report IC/68/50, ICPT Trieste, 1968 | MR

[8] A. Oksak, I. T. Todorov, Comm. Math. Phys., 11 (1968), 125 | DOI | MR | Zbl

[9] D. I. Blokhintsev, ZhETF, 17 (1947), 545; D. Blokhintsev, “On the Simple Relativistic Models of the Hadrons”, Coral Gables Conference on Fundamental Interactions at High Energy, Gordon and Breach, New York, 1969

[10] V. L. Ginzburg, I. E. Tamm, ZhETF, 17 (1947), 227

[11] Yu. M. Shirokov, ZhETF, 21 (1951), 748 | MR

[12] R. F. Streater, Proc. Phys. Soc., 83 (1964), 549 | DOI | MR | Zbl

[13] C. Fronsdal, “Two Particle Systems and Infinite Component, Fields”, Voprosy teorii elementarnykh chastits, R2-4050, Dubna, 1968

[14] T. Takabayashi, Proceedings of Nobel Symposium, ed. N. Svartholm, John Wiley and Sons, New York, 1968

[15] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatgiz, M., 1962 | MR

[16] A. Oksak, I. T. Todorov, On the Covariant Structure of the Two-Point Functions, Preprint Princeton, Institute for Advanced Study, 1968 | MR

[17] Chzhou Guan-chzhao, L. G. Zastavenko, ZhETF, 35 (1958), 1417

[18] V. S. Popov, ZhETF, 37 (1959), 1116 | MR | Zbl