Translation-invariant shell model
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 1, pp. 106-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classification of states in Kretschmar's translatton-invariant shell model [1] is augmoated by the tntroduction of a quantum number characterizing the irreducible representation of the orthogonal group $\mathfrak D_{A-1}$. This reduces the multiplicity wfih which irreducible representation of the group of permutations $\mathfrak S_A$ occurs on the redaction of the unitary group $\mathfrak U_{A-1}$. Some relations are also obtained which are useful for improving the model.
@article{TMF_1970_3_1_a8,
     author = {I. Z. Machabeli},
     title = {Translation-invariant shell model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {106--114},
     year = {1970},
     volume = {3},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a8/}
}
TY  - JOUR
AU  - I. Z. Machabeli
TI  - Translation-invariant shell model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 106
EP  - 114
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a8/
LA  - ru
ID  - TMF_1970_3_1_a8
ER  - 
%0 Journal Article
%A I. Z. Machabeli
%T Translation-invariant shell model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 106-114
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a8/
%G ru
%F TMF_1970_3_1_a8
I. Z. Machabeli. Translation-invariant shell model. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 1, pp. 106-114. http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a8/

[1] M. Kretschmar, Z. Phys., 157 (1959), 433 ; 158 (1960), 284 | DOI | MR | DOI

[2] D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford, 1950 | MR

[3] D. E. Littlewood, Canad. J. Math., 10 (1958), 1 | DOI | MR | Zbl

[4] D. E. Littlewood, Canad. J. Math., 10 (1958), 17 | DOI | MR | Zbl

[5] J. P. Elliot, Proc. Roy. Soc. London, A245, 128; (1958), 562 | DOI | Zbl

[6] V. Bargmann, M. Moshinsky, Nucl. Phys., 23 (1961), 177 | DOI | MR | Zbl

[7] V. Bargmann, M. Moshinsky, Nucl. Phys., 18 (1960), 697 | DOI | MR | Zbl

[8] P. Kramer, M. Moshinsky, Nucl. Phys., 82 (1966), 241 | DOI | MR | Zbl

[9] Yu. F. Smirnov, K. V. Shitikova, Izv. AN SSSR, ser. fiz., 27 (1963), 1442

[10] Yu. F. Smirnov, K. V. Shitikova, S. Kh. Samarae, Vestn. MGU, 2 (1968), 23

[11] V. V. Vanagas, L. Yu. Salabyauskas, Litovsk. fiz. sb., 8:2 (1968)

[12] P. Kramer, M. Moshinsky, Phys. Letters, 23 (1966), 574 | DOI

[13] G. Sh. Gogsadze, T. I. Kopaleishvili, YaF, 8 (1968), 875

[14] T. I. Kopaleishvili, I. Z. Machabeli, YaF, 9 (1969), 87

[15] M. Khamermesh, Teoriya grupp i ee primenenie k fizicheskim problemam, «Mir», 1966 | Zbl

[16] H. O. Foulkes, Phys. Trans. Roy. Soc., A246 (1954), 555 | DOI | MR | Zbl

[17] F. D. Murnaghan, Proc. Nat. Acad. Sci. USA, 38 (1952), 973 ; E. M. Ibrahim, Proc. Math. Phys. Soc. Egypt., 5 (1955), 85 ; E. M. Ibrahim, Proc. American Math. Soc., 7 (1956), 199 | DOI | MR | MR | Zbl | DOI | MR | Zbl