Jost function for two-channel scattering problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 1, pp. 100-105
Cet article a éte moissonné depuis la source Math-Net.Ru
The Jost function is generalized to the case of two-channel scattering of nonrelativistic spinless particles with an arbitrary (not necessarily local) interaction Hamiltonian. It is shown that the problem of finding the Jost matrix from the $S$-matrix reduces to the solution of a nonsingular integral equation for a single function. An explicit solution for the Jost matrix can be found if the $S$-matrix can be continued analytically.
@article{TMF_1970_3_1_a7,
author = {M. L. Kharakhan and Yu. M. Shirokov},
title = {Jost function for two-channel scattering problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {100--105},
year = {1970},
volume = {3},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a7/}
}
M. L. Kharakhan; Yu. M. Shirokov. Jost function for two-channel scattering problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 1, pp. 100-105. http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a7/
[1] R. Jost, Helv. Phys. Acta, 20 (1947), 256 | MR
[2] M. Goldberger, K. Vatson, Teoriya stolknovenii, », 1967
[3] V. de Alfaro, T. Redzhe, Potentsialnoe rasseyanie, «Mir», 1966 | Zbl
[4] Yu. M. Shirokov, “Polya i chastitsy”, Trudy mezhdunarodnogo soveschaniya po nelokalnoi kvantovoi teorii polya, Dubna, 1967 | Zbl
[5] V. E. Troitskii, Preprint ITF-68-26, Kiev, 1968 | Zbl
[6] V. E. Troitskii, Yu. M. Shirokov, TMF, 1 (1969), 213
[7] N. P. Vekua, Sistemy singulyarnykh integralnykh uravnenii, Gostekhizdat, 1950
[8] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Fizmatgiz, 1962 | MR