Method of local construction of invariant subspaces in the solution space of Chew–Low equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 1, pp. 78-93
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear system offunctlonal equations for the matrix elements of the $S$-matrix is formulated on the basis of Chew–Low equations. A transition is made to projective coordinates in the spade of the matrix elements of the $S$-matrix and the unitarity condiflons are linearlzed. On the basis of a geometrical interpretation of the system of nonlinear functional equations as a transformation in an $(n-1)$-dimensional real space, it is shown that some of the solutions of the original system of equations lie on invariant hypersurfaecs of this space. A method is proposed for the local construction of the invariant hypersurfaces in the neighborhood of the fixed points of the transformation. This method is applied to the Chew–Low equations with $3\times 3$ and $4\times 4$ crossing matrices. It is shown that, if the Chew–Low equations have a selution, the arbitrariness, which is a generalization of the well-known $\beta$-arbitrariness, in the solutions of the class considered is not exhaustive.
@article{TMF_1970_3_1_a5,
     author = {V. A. Meshcheryakov and K. V. Rerikh},
     title = {Method of local construction of invariant subspaces in the solution space of {Chew{\textendash}Low} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {78--93},
     year = {1970},
     volume = {3},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a5/}
}
TY  - JOUR
AU  - V. A. Meshcheryakov
AU  - K. V. Rerikh
TI  - Method of local construction of invariant subspaces in the solution space of Chew–Low equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 78
EP  - 93
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a5/
LA  - ru
ID  - TMF_1970_3_1_a5
ER  - 
%0 Journal Article
%A V. A. Meshcheryakov
%A K. V. Rerikh
%T Method of local construction of invariant subspaces in the solution space of Chew–Low equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 78-93
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a5/
%G ru
%F TMF_1970_3_1_a5
V. A. Meshcheryakov; K. V. Rerikh. Method of local construction of invariant subspaces in the solution space of Chew–Low equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 1, pp. 78-93. http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a5/

[1] F. Low, Phys. Rev., 97 (1955), 1392 | DOI | MR | Zbl

[2] G. Chew, F. Low, Phys. Rev., 101 (1956), 1570 | DOI | MR | Zbl

[3] G. Chew, M. Goldberger, F. Low, Y. Nambu, Phys. Rev., 106 (1957), 1337 | DOI | MR | Zbl

[4] Mc. Dowell, Phys. Rev., 116 (1959), 774 | DOI | MR

[5] V. A. Mescheryakov, ZhETF, 53 (1967), 175

[6] S. F. Edwards, P. T. Matthews, Phi]. Mag., 2 (1957), 839 | DOI | MR | Zbl

[7] L. Castillejo, R. Dalitz, F. Dyson, Phys. Rev., 101 (1956), 453 | DOI | Zbl

[8] G. Wanders, Nuov. Cim., 23 (1962), 816 | MR

[9] A. Martin, W. D. McGlinn, Phys. Rev., 136 (1964), B1515 | DOI | MR

[10] T. Rothelutner, Z. Phys., 177 (1964), 287 | DOI

[11] V. A. Mescheryakov, ZhETF, 52 (1966), 648

[12] K. Huang, F. Low, J. Math. Phys., 6 (1965), 795 | DOI | MR | Zbl

[13] V. A. Mescheryakov, Preprint R-2369, OIYaI, 1965 | MR

[14] V. A. Mescheryakov, Phys. Lett., 24B (1967), 63 | DOI

[15] V. A. Mescheryakov, Metod resheniya staticheskogo predela dispersionnykh uravnenii rasseyaniya, Doktorskaya dissertatsiya, Dubna, 1967

[16] V. I. Zhuravlev, V. A. Mescheryakov, K. V. Rerikh, Preprint R2-4167, OIYaI, 1968

[17] V. A. Mescheryakov, K. V. Rerikh, Soobscheniya R2-4356, OIYaI, 1969

[18] V. A. Mescheryakov, K. V. Rerikh, Soobscheniya R2-4377, OIYaI, 1969

[19] R. L. Warnock, Phys. Rev., 170 (1968), 1323 | DOI

[20] H. McDanniel, R. L. Warnock, Phys. Rev., 180 (1969), 1433 | DOI

[21] H. J. Kaiser, Preprint PHE 68-2, Berlin, 1968 | Zbl

[22] A. I. Markushevich, Teoriya analiticheskikh funktsii, t. I, «Nauka», 1967 | MR

[23] R. Nevanlinna, Uniformizatsiya, IL, 1957

[24] S. Lattés, Ann. Mathematica, (3) 13 (1906), 1–137 | Zbl

[25] J. Hadamard, Bull. Soc. Math. France, 29 (1901), 224 | Zbl

[26] P. Montel, Leçons sur les récurrences et leurs applications, Gauthier-Villars, Paris, 1957 | MR | Zbl

[27] M. Kuczma, Functional equations in a single variable, Pol. Scien. Publ., Warsawa, 1968 | MR | Zbl