Elimination of divergences in quantum mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 1, pp. 72-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of the one-dimensional Schrödinger equation, written In the $S$-matrix form (ordered exponential function) is expanded in a series whose terms diverge. It is shown that the infinities arise because the phase of a matrix elenaent of the exact solution has an infinite value. By means of a separate expransion for the modulus and phase of the matrix element and comparison with the expansion for the $S$-matrix, it is possible to find a series for the square of the modulus that does not contain an infinity. The technique deycleped for calculating the modulus of the matrix element is illustrated for an example having an analytic solution.
@article{TMF_1970_3_1_a4,
     author = {V. A. Kolkunov},
     title = {Elimination of divergences in quantum mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {72--77},
     year = {1970},
     volume = {3},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a4/}
}
TY  - JOUR
AU  - V. A. Kolkunov
TI  - Elimination of divergences in quantum mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 72
EP  - 77
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a4/
LA  - ru
ID  - TMF_1970_3_1_a4
ER  - 
%0 Journal Article
%A V. A. Kolkunov
%T Elimination of divergences in quantum mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 72-77
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a4/
%G ru
%F TMF_1970_3_1_a4
V. A. Kolkunov. Elimination of divergences in quantum mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 1, pp. 72-77. http://geodesic.mathdoc.fr/item/TMF_1970_3_1_a4/

[1] S. N. Sokolov, Preprint R-906, OIYaI, 1962 | MR

[2] I. I. Goldman, A. B. Migdal, ZhETF, 28 (1955), 394 | MR | Zbl