Connection between the energy-momentum vector and the canonical momentum in relativistic mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 333-337 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Relativistic mechanics is regarded as a limiting case of a mechanics with four independent canonical momenta $p_i$. It is shown that creation and annihilation of particles is possible in this limiting case. A connection is established between the energy-momentum vector of a particle and its canonical momentum. The usual relation $E=-p_0$ between the energy of a particle and the time component of the canonical momentum is a special case and is only valid when the world line of the particle does not double back in time.
@article{TMF_1970_2_3_a6,
     author = {Yu. A. Rylov},
     title = {Connection between the energy-momentum vector and the canonical momentum in relativistic mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {333--337},
     year = {1970},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a6/}
}
TY  - JOUR
AU  - Yu. A. Rylov
TI  - Connection between the energy-momentum vector and the canonical momentum in relativistic mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 333
EP  - 337
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a6/
LA  - ru
ID  - TMF_1970_2_3_a6
ER  - 
%0 Journal Article
%A Yu. A. Rylov
%T Connection between the energy-momentum vector and the canonical momentum in relativistic mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 333-337
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a6/
%G ru
%F TMF_1970_2_3_a6
Yu. A. Rylov. Connection between the energy-momentum vector and the canonical momentum in relativistic mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 333-337. http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a6/

[1] V. A. Fok, Izv. AN SSSR, OMEN, 1937, 551 ; В. А. Фок, Работы по квантовой теории поля, Сб., Изд-во Ленинградского ун-та, 1957

[2] L. D. Landau, E. M. Lifshits, Teoriya polya, Fizmatgiz, 1962 | MR

[3] S. Shveber, Vvedenie v relyativistskuyu kvantovuyu teoriyu polya, IL, 1963

[4] E. C. G. Stueckelberg, Helv. Phys. Acta, 15 (1942), 23 | MR | Zbl

[5] R. P. Feynman, Phys. Rev., 76 (1949), 749 ; Noveishee razvitie kvantovoi elektrodinamiki, Sb., IL, 1957 | DOI | MR | Zbl