Connection between the energy-momentum vector and the canonical momentum in relativistic mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 333-337
Cet article a éte moissonné depuis la source Math-Net.Ru
Relativistic mechanics is regarded as a limiting case of a mechanics with four independent canonical momenta $p_i$. It is shown that creation and annihilation of particles is possible in this limiting case. A connection is established between the energy-momentum vector of a particle and its canonical momentum. The usual relation $E=-p_0$ between the energy of a particle and the time component of the canonical momentum is a special case and is only valid when the world line of the particle does not double back in time.
@article{TMF_1970_2_3_a6,
author = {Yu. A. Rylov},
title = {Connection between the energy-momentum vector and the canonical momentum in relativistic mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {333--337},
year = {1970},
volume = {2},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a6/}
}
TY - JOUR AU - Yu. A. Rylov TI - Connection between the energy-momentum vector and the canonical momentum in relativistic mechanics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1970 SP - 333 EP - 337 VL - 2 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a6/ LA - ru ID - TMF_1970_2_3_a6 ER -
Yu. A. Rylov. Connection between the energy-momentum vector and the canonical momentum in relativistic mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 333-337. http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a6/
[1] V. A. Fok, Izv. AN SSSR, OMEN, 1937, 551 ; В. А. Фок, Работы по квантовой теории поля, Сб., Изд-во Ленинградского ун-та, 1957
[2] L. D. Landau, E. M. Lifshits, Teoriya polya, Fizmatgiz, 1962 | MR
[3] S. Shveber, Vvedenie v relyativistskuyu kvantovuyu teoriyu polya, IL, 1963
[4] E. C. G. Stueckelberg, Helv. Phys. Acta, 15 (1942), 23 | MR | Zbl
[5] R. P. Feynman, Phys. Rev., 76 (1949), 749 ; Noveishee razvitie kvantovoi elektrodinamiki, Sb., IL, 1957 | DOI | MR | Zbl