Solution of the problem of random walks in a space of constant curvature
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 328-332
Cet article a éte moissonné depuis la source Math-Net.Ru
The exact solution of the problem of random walks on a sphere and in Lobachevskii space is given.
@article{TMF_1970_2_3_a5,
author = {R. M. Muradyan},
title = {Solution of the problem of random walks in a~space of constant curvature},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {328--332},
year = {1970},
volume = {2},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a5/}
}
R. M. Muradyan. Solution of the problem of random walks in a space of constant curvature. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 328-332. http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a5/
[1] G. N. Vatson, Teoriya besselevykh funktsii, ch. I, IL, 1949
[2] S. Chandrasekar, Stokhasticheskie problemy v fizike i astronomii, IL, 1947
[3] B. R. Levin, Teoriya sluchainykh protsessov i ee primenenie k radiotekhnike, «Sov. radio», 1960
[4] A. Zommerfeld, Differentsialnye uravneniya v chastnykh proizvodnykh fiziki, IL, 1950
[5] V. A. Fok, DAN SSSR, 39 (1943), 279
[6] V. M. Arutyunyan, R. M. Muradyan, ZhETF, 36 (1959), 1542 | Zbl
[7] H. Batheman, Higher Transcendental Functions, v. II, Mc Grow-Hill Brok Company, N.-Y., 1953 | MR
[8] N. V. Efimov, Vysshaya geometriya, Gostekhizdat, 1953 | MR
[9] V. de Alfaro, T. Regge, C. Rosetti, Nuovo Cim., 26 (1962), 1029 | DOI | MR | Zbl