Nonlocal quantum field theory, nonlinear interaction lagrangians, and the convergence of the perturbation-theory series
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 302-310

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown within the framework of nonlocal quantum theory of a one-component scalar field go that for significantly nonlinear interaction Lagrangians $L_I(x)=gU(\varphi(x))$ such that the function $U(\alpha)$ satisfies the condition $$ \lim_{\alpha\to\pm\infty}\vert U(\alpha)\vert=0, $$ it is possible to choose the noniocal formfactor in such a manner that the $S$-matrix will be finite and unitary in every order of perturbation theory and the perturbation-theory series will converge absolutely in a Euclidean domain.
@article{TMF_1970_2_3_a3,
     author = {G. V. Efimov},
     title = {Nonlocal quantum field theory, nonlinear interaction lagrangians, and the convergence of the perturbation-theory series},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {302--310},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a3/}
}
TY  - JOUR
AU  - G. V. Efimov
TI  - Nonlocal quantum field theory, nonlinear interaction lagrangians, and the convergence of the perturbation-theory series
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 302
EP  - 310
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a3/
LA  - ru
ID  - TMF_1970_2_3_a3
ER  - 
%0 Journal Article
%A G. V. Efimov
%T Nonlocal quantum field theory, nonlinear interaction lagrangians, and the convergence of the perturbation-theory series
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 302-310
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a3/
%G ru
%F TMF_1970_2_3_a3
G. V. Efimov. Nonlocal quantum field theory, nonlinear interaction lagrangians, and the convergence of the perturbation-theory series. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 302-310. http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a3/