Nonlocal quantum field theory, nonlinear interaction lagrangians, and the convergence of the perturbation-theory series
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 302-310 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown within the framework of nonlocal quantum theory of a one-component scalar field go that for significantly nonlinear interaction Lagrangians $L_I(x)=gU(\varphi(x))$ such that the function $U(\alpha)$ satisfies the condition $$ \lim_{\alpha\to\pm\infty}\vert U(\alpha)\vert=0, $$ it is possible to choose the noniocal formfactor in such a manner that the $S$-matrix will be finite and unitary in every order of perturbation theory and the perturbation-theory series will converge absolutely in a Euclidean domain.
@article{TMF_1970_2_3_a3,
     author = {G. V. Efimov},
     title = {Nonlocal quantum field theory, nonlinear interaction lagrangians, and the convergence of the perturbation-theory series},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {302--310},
     year = {1970},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a3/}
}
TY  - JOUR
AU  - G. V. Efimov
TI  - Nonlocal quantum field theory, nonlinear interaction lagrangians, and the convergence of the perturbation-theory series
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 302
EP  - 310
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a3/
LA  - ru
ID  - TMF_1970_2_3_a3
ER  - 
%0 Journal Article
%A G. V. Efimov
%T Nonlocal quantum field theory, nonlinear interaction lagrangians, and the convergence of the perturbation-theory series
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 302-310
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a3/
%G ru
%F TMF_1970_2_3_a3
G. V. Efimov. Nonlocal quantum field theory, nonlinear interaction lagrangians, and the convergence of the perturbation-theory series. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 302-310. http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a3/

[1] F. Gursey, Nuovo Cim., 16 (1960), 230 ; J. Schwinger, Phys. Letters, 24B (1967), 473 ; S. Coleman, J. Wess, B. Zumino, Phys. Rev., 177 (1969), 2239 ; C. G. Callen, S. Coleman, J. Wess, B. Zumino, Phys. Rev., 177 (1969), 2247 | DOI | MR | Zbl | DOI | DOI | DOI

[2] J. Schwinger, Phys. Rev., 158 (1967), 1391 | DOI

[3] G. V. Efimov, ZhETF, 44 (1963), 2107 ; E. S. Fradkin, Nucl. Phys., 49 (1963), 624 ; G. V. Efimov, Nuovo Cim., 32 (1964), 1046 ; Г. В. Ефимов, ЖЭТФ, 48 (1965), 598; G. V. Efimov, Nucl. Phys., 74 (1965), 657 ; M. K. Volkov, Commun. Math. Phys., 7 (1968), 289 | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl

[4] G. V. Efimov, Preprint R2-4472, OIYaI, 1969 | MR

[5] R. Delbourgo, A. Salam, J. Strathdee, Preprint Trieste, IC-69-17, 1969

[6] G. V. Efimov, Commun. Math. Phys., 5 (1967), 42 ; Г. В. Ефимов, ЯФ, 4 (1960), 432; Г. В. Ефимов, Препринт ИТФ-68-54, Киев, 1968 | DOI | MR | Zbl

[7] G. V. Efimov, Commun. Math. Phys., 7 (1968), 138 | DOI | MR | Zbl

[8] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Gostekhizdat, 1957 | MR