Nonlinear generalizations of the Dirac equation allowing the conformal group
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 297-301
Voir la notice de l'article provenant de la source Math-Net.Ru
The most general form is proposed for a nonlinear additional term to the homogeneous (zero mass) Dirac equation that does not destroy conformal invariance. The largest transformation group of independent variables and components of $\psi$ which is allowed in the sense of S. Lie by the above-mentioned generalizations of the Dirac equation was determined.
@article{TMF_1970_2_3_a2,
author = {Yu. A. Danilov},
title = {Nonlinear generalizations of the {Dirac} equation allowing the conformal group},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {297--301},
publisher = {mathdoc},
volume = {2},
number = {3},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a2/}
}
Yu. A. Danilov. Nonlinear generalizations of the Dirac equation allowing the conformal group. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 297-301. http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a2/