Nonlinear generalizations of the Dirac equation allowing the conformal group
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 297-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The most general form is proposed for a nonlinear additional term to the homogeneous (zero mass) Dirac equation that does not destroy conformal invariance. The largest transformation group of independent variables and components of $\psi$ which is allowed in the sense of S. Lie by the above-mentioned generalizations of the Dirac equation was determined.
@article{TMF_1970_2_3_a2,
     author = {Yu. A. Danilov},
     title = {Nonlinear generalizations of the {Dirac} equation allowing the conformal group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {297--301},
     year = {1970},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a2/}
}
TY  - JOUR
AU  - Yu. A. Danilov
TI  - Nonlinear generalizations of the Dirac equation allowing the conformal group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 297
EP  - 301
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a2/
LA  - ru
ID  - TMF_1970_2_3_a2
ER  - 
%0 Journal Article
%A Yu. A. Danilov
%T Nonlinear generalizations of the Dirac equation allowing the conformal group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 297-301
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a2/
%G ru
%F TMF_1970_2_3_a2
Yu. A. Danilov. Nonlinear generalizations of the Dirac equation allowing the conformal group. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 297-301. http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a2/

[1] F. Gürsey, Nuovo Cim., 3 (1956), 988 | DOI | MR | Zbl

[2] H. Bateman, Proc. London Math. Soc., 8 (1910), 223 | DOI | Zbl

[3] L. V. Ovsyannikov, Gruppovye svoistva differentsialnykh uravnenii, Izd. SO AN SSSR, Novosibirsk, 1962 | MR