On the spectrum of the Dirac operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 377-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the Dirac operator $$ H \varphi=-i\sum_{j=1}^3\alpha_j\biggl(\frac\partial{\partial x_j}+iA_j(x)\biggr)\varphi+\alpha_4\varphi-q(x)\varphi $$ does not possess a discrete spectrum lying on the continuous spectrum under the condition lim $$ \lim_{|x|\to\infty}|x|\biggl(\sum_{j=1}^3|A_j(x)|+|q(x)|\biggr)=0. $$
@article{TMF_1970_2_3_a12,
     author = {S. N. Roze},
     title = {On the spectrum of the {Dirac} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {377--382},
     year = {1970},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a12/}
}
TY  - JOUR
AU  - S. N. Roze
TI  - On the spectrum of the Dirac operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 377
EP  - 382
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a12/
LA  - ru
ID  - TMF_1970_2_3_a12
ER  - 
%0 Journal Article
%A S. N. Roze
%T On the spectrum of the Dirac operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 377-382
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a12/
%G ru
%F TMF_1970_2_3_a12
S. N. Roze. On the spectrum of the Dirac operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 377-382. http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a12/

[1] T. Kato, Comm. Pure and Appl. Math., 12 (1959), 3 | DOI | MR

[2] D. M. Eidus, UMN, XXIV (1969), 91 | MR

[3] S. N. Roze, Matem. sb., 80 (122) (1969), 195 | MR | Zbl

[4] M. Sh. Birman, Matem. sb., 55 (1961), 125 | MR | Zbl

[5] E. Heinz, Nachr. Acad. Wiss. Göttingen. Math.-phys. Kl. II-a, Math.-phys.-chem. Abteilung, no. 1, 1955 | MR