On the spectrum of the Dirac operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 377-382
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the Dirac operator $$ H \varphi=-i\sum_{j=1}^3\alpha_j\biggl(\frac\partial{\partial x_j}+iA_j(x)\biggr)\varphi+\alpha_4\varphi-q(x)\varphi $$ does not possess a discrete spectrum lying on the continuous spectrum under the condition lim $$ \lim_{|x|\to\infty}|x|\biggl(\sum_{j=1}^3|A_j(x)|+|q(x)|\biggr)=0. $$
@article{TMF_1970_2_3_a12,
author = {S. N. Roze},
title = {On the spectrum of the {Dirac} operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {377--382},
year = {1970},
volume = {2},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a12/}
}
S. N. Roze. On the spectrum of the Dirac operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 377-382. http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a12/
[1] T. Kato, Comm. Pure and Appl. Math., 12 (1959), 3 | DOI | MR
[2] D. M. Eidus, UMN, XXIV (1969), 91 | MR
[3] S. N. Roze, Matem. sb., 80 (122) (1969), 195 | MR | Zbl
[4] M. Sh. Birman, Matem. sb., 55 (1961), 125 | MR | Zbl
[5] E. Heinz, Nachr. Acad. Wiss. Göttingen. Math.-phys. Kl. II-a, Math.-phys.-chem. Abteilung, no. 1, 1955 | MR