Wave operators for the Schrödinger equation with a slowly decreasing potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 367-376 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present article is devoted to the study in space $L_2(R^n)$ of the energy operator $\displaystyle H_q=-\frac 1{2m}\Delta+q(x)$, where the function $q(x)$ decreases slower that $|x|^{-\alpha}$, $\alpha>0$, as $|x|\to\infty$. An explicit “regularizing” operator $U_q(t)$ is constructed and the existence of generalized wave operators $$ W_{\pm}(H_q, H_0)=\mathop{\textrm{s-lim}}_{t\to\pm\infty}\exp\{-itH_q\}\exp\{itH_0\}U_q(t) $$ is proved.
@article{TMF_1970_2_3_a11,
     author = {V. S. Buslaev and V. B. Matveev},
     title = {Wave operators for the {Schr\"odinger} equation with a~slowly decreasing potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--376},
     year = {1970},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a11/}
}
TY  - JOUR
AU  - V. S. Buslaev
AU  - V. B. Matveev
TI  - Wave operators for the Schrödinger equation with a slowly decreasing potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 367
EP  - 376
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a11/
LA  - ru
ID  - TMF_1970_2_3_a11
ER  - 
%0 Journal Article
%A V. S. Buslaev
%A V. B. Matveev
%T Wave operators for the Schrödinger equation with a slowly decreasing potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 367-376
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a11/
%G ru
%F TMF_1970_2_3_a11
V. S. Buslaev; V. B. Matveev. Wave operators for the Schrödinger equation with a slowly decreasing potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 367-376. http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a11/

[1] J. D. Dollard, J. Math. Phys., 5:6 (1964) | DOI | MR

[2] L. A. Sakhnovich, Tr. Mosk. matem. ob-va, 29, 1968

[3] V. S. Buslaev, Vestn. LGU, ser. matem., 1970 (to appear)

[4] M. V. Fedoryuk, ZhVM i MF, 2 (1962), 145 | Zbl

[5] A. Erdeii, Asimptoticheskie razlozheniya, Fizmatgiz, 1962

[6] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, «Nauka», 1966 | MR | Zbl