Wave operators for the Schr\"odinger equation with a~slowly decreasing potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 367-376

Voir la notice de l'article provenant de la source Math-Net.Ru

The present article is devoted to the study in space $L_2(R^n)$ of the energy operator $\displaystyle H_q=-\frac 1{2m}\Delta+q(x)$, where the function $q(x)$ decreases slower that $|x|^{-\alpha}$, $\alpha>0$, as $|x|\to\infty$. An explicit “regularizing” operator $U_q(t)$ is constructed and the existence of generalized wave operators $$ W_{\pm}(H_q, H_0)=\mathop{\textrm{s-lim}}_{t\to\pm\infty}\exp\{-itH_q\}\exp\{itH_0\}U_q(t) $$ is proved.
@article{TMF_1970_2_3_a11,
     author = {V. S. Buslaev and V. B. Matveev},
     title = {Wave operators for the {Schr\"odinger} equation with a~slowly decreasing potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--376},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a11/}
}
TY  - JOUR
AU  - V. S. Buslaev
AU  - V. B. Matveev
TI  - Wave operators for the Schr\"odinger equation with a~slowly decreasing potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 367
EP  - 376
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a11/
LA  - ru
ID  - TMF_1970_2_3_a11
ER  - 
%0 Journal Article
%A V. S. Buslaev
%A V. B. Matveev
%T Wave operators for the Schr\"odinger equation with a~slowly decreasing potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 367-376
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a11/
%G ru
%F TMF_1970_2_3_a11
V. S. Buslaev; V. B. Matveev. Wave operators for the Schr\"odinger equation with a~slowly decreasing potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 367-376. http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a11/