On~a~characteristic property of Weyl quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 292-296

Voir la notice de l'article provenant de la source Math-Net.Ru

A condition is found under which a linear continuous mapping $W_1\colon L_2(\mathscr M)\to\hat{L_2}(H)$ of the space $L_2(\mathscr M)$ of generalized functionals on a phase space $\mathscr M$ into the set $\hat{L_2}(H)$ of Hilbert–Schmidt operators on a Fok space $H$ differs by only a numerical factor from Weyl quantization $W$.
@article{TMF_1970_2_3_a1,
     author = {V. S. Buslaev and M. M. Skriganov},
     title = {On~a~characteristic property of {Weyl} quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {292--296},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a1/}
}
TY  - JOUR
AU  - V. S. Buslaev
AU  - M. M. Skriganov
TI  - On~a~characteristic property of Weyl quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 292
EP  - 296
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a1/
LA  - ru
ID  - TMF_1970_2_3_a1
ER  - 
%0 Journal Article
%A V. S. Buslaev
%A M. M. Skriganov
%T On~a~characteristic property of Weyl quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 292-296
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a1/
%G ru
%F TMF_1970_2_3_a1
V. S. Buslaev; M. M. Skriganov. On~a~characteristic property of Weyl quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 3, pp. 292-296. http://geodesic.mathdoc.fr/item/TMF_1970_2_3_a1/