Nonlinear ferromagnetic resonance in anisotropic ferrite ellipsoid
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 2, pp. 254-264

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlinear equation of motion of the magnetization vector in an anisotropic ferrite ellipsoid is solved by the N. N. Bogolyubov averaging method [1]. It is shown that in the case of uniform precession with a frequency $\omega$ there can exist subharmonic and multiple resonances with frequencies $\omega\simeq\nu/q$ ($q=1,2,3,4,5$) and $\omega\simeq 2\nu$, where $\nu$ is the uhf field frequency.
@article{TMF_1970_2_2_a7,
     author = {A. B. Petrovskii},
     title = {Nonlinear ferromagnetic resonance in anisotropic ferrite ellipsoid},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {254--264},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_2_a7/}
}
TY  - JOUR
AU  - A. B. Petrovskii
TI  - Nonlinear ferromagnetic resonance in anisotropic ferrite ellipsoid
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 254
EP  - 264
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_2_a7/
LA  - ru
ID  - TMF_1970_2_2_a7
ER  - 
%0 Journal Article
%A A. B. Petrovskii
%T Nonlinear ferromagnetic resonance in anisotropic ferrite ellipsoid
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 254-264
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_2_a7/
%G ru
%F TMF_1970_2_2_a7
A. B. Petrovskii. Nonlinear ferromagnetic resonance in anisotropic ferrite ellipsoid. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 2, pp. 254-264. http://geodesic.mathdoc.fr/item/TMF_1970_2_2_a7/