$S$-matrix problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 2, pp. 169-180

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the approximate solution of the one-dimensional Schrödinger equation, obtained by replacing the potential by a step function, leads to the study of a multiplicative integral, for the analysis of which a graphical method is developed. A parametrization of the $S$-matrix in terms of Euler angles is used in a study of the transmission of waves through a force field, and a relation is established between the solution of the equation and Lobachevskii geometry.
@article{TMF_1970_2_2_a1,
     author = {V. A. Kolkunov},
     title = {$S$-matrix problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {169--180},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_2_a1/}
}
TY  - JOUR
AU  - V. A. Kolkunov
TI  - $S$-matrix problems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 169
EP  - 180
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_2_a1/
LA  - ru
ID  - TMF_1970_2_2_a1
ER  - 
%0 Journal Article
%A V. A. Kolkunov
%T $S$-matrix problems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 169-180
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_2_a1/
%G ru
%F TMF_1970_2_2_a1
V. A. Kolkunov. $S$-matrix problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 2, pp. 169-180. http://geodesic.mathdoc.fr/item/TMF_1970_2_2_a1/