$S$-matrix problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 2, pp. 169-180
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the approximate solution of the one-dimensional Schrödinger equation, obtained by replacing the potential by a step function, leads to the study of a multiplicative integral, for the analysis of which a graphical method is developed. A parametrization of the $S$-matrix in terms of Euler angles is used in a study of the transmission of waves through a force field, and a relation is established between the solution of the equation and Lobachevskii geometry.
@article{TMF_1970_2_2_a1,
author = {V. A. Kolkunov},
title = {$S$-matrix problems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {169--180},
publisher = {mathdoc},
volume = {2},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_2_a1/}
}
V. A. Kolkunov. $S$-matrix problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 2, pp. 169-180. http://geodesic.mathdoc.fr/item/TMF_1970_2_2_a1/