Generalized wave operators and regularization of perturbation series
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 1, pp. 87-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All independent complex and real characteristics of a scalar and tensor nature are determined for spinors in $n$-dimensional (generally, complex) Euclidian space. A one-to-one correspondence is established between the components of a spinor and of a proposed special complex tensor aggregate $C$, which is defined by the spinor. In real Euclidian spaces, a homomorphic relation between the components of a spinor and the components of a real tensor aggregate $D$, defined by the spinor, is given. All the formulas and relationships between a spinor and the aggregates $C$ and $D$ are given in particular for four-dimensional Minkowskispace. The resultant theory allows one to arrive at some conclusions about the possibility of a metric description of the interaction between fermion and gravitational fields.
@article{TMF_1970_2_1_a7,
     author = {V. A. Zhelnorovich},
     title = {Generalized wave operators and regularization of perturbation series},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {87--102},
     year = {1970},
     volume = {2},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a7/}
}
TY  - JOUR
AU  - V. A. Zhelnorovich
TI  - Generalized wave operators and regularization of perturbation series
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 87
EP  - 102
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a7/
LA  - ru
ID  - TMF_1970_2_1_a7
ER  - 
%0 Journal Article
%A V. A. Zhelnorovich
%T Generalized wave operators and regularization of perturbation series
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 87-102
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a7/
%G ru
%F TMF_1970_2_1_a7
V. A. Zhelnorovich. Generalized wave operators and regularization of perturbation series. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 1, pp. 87-102. http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a7/

[1] V. A. Zhelnorovich, DAN SSSR, 169 (1966), 225 | MR

[2] V. A. Zhelnorovich, PMM, 30 (1966), 1087 | Zbl

[3] D. Uiller, Gravitatsiya, neitrino i Vselennaya, IL, 1962

[4] L. Schmid, Spinor formulation of magnetogas dynamics, Goddard space fleight center, Greenbelt, Maryland, 1964

[5] G. A. Zaitsev, ZhETF, no. 6, 653 ; 667; 1953, 675 | MR | Zbl

[6] J. R. Klauder, J. Math. Phys., 5 (1966), 1204 | DOI | MR

[7] R. Penrose, Phys. Rev. Letters, 10 (1963), 66 | DOI | MR

[8] E. Kartan, Teoriya spinorov, GIIL, 1947

[9] D. D. Ivanenko, Vstupitelnaya statya, Gravitatsiya i topologiya, Sb., «Mir», 1966

[10] Kh. Meller, “Zakony sokhraneniya v tetradnoi teorii gravitatsii”, Gravitatsiya i topologiya, Sb., «Mir», 1966

[11] S. Shveber, Vvedenie v relyativistskuyu kvantovuyu teoriyu polya, IL, 1963

[12] P. K. Rashevskii, UMN, 10 (1954), 3

[13] Yu. B. Rumer, Issledovaniya po 5-optike, gl. 5, Gostekhizdat, 1956 | MR

[14] V. A. Fok, J. Phys. Radium, 10 (1929)

[15] V. A. Fok, Z. Phys., 57 (1929), 216

[16] V. A. Fok, D. D. Ivanenko, Compt. Rend, 188 (1929), 1470