Glauber type representation for the scattering amplitude of high-energy Dirac particles on smooth potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 1, pp. 73-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The derivation of a Glauber type representation is given for the scattering amplitude of particles of spin 1/2 on smooth potentials when the impinging particles have high energies. The discussion proceeds within the framework of the two-component description, and on the basis of the Dirac equation.
@article{TMF_1970_2_1_a5,
     author = {S. P. Kuleshov and V. A. Matveev and A. N. Sisakyan},
     title = {Glauber type representation for the scattering amplitude of high-energy {Dirac} particles on smooth potentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {73--79},
     year = {1970},
     volume = {2},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a5/}
}
TY  - JOUR
AU  - S. P. Kuleshov
AU  - V. A. Matveev
AU  - A. N. Sisakyan
TI  - Glauber type representation for the scattering amplitude of high-energy Dirac particles on smooth potentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 73
EP  - 79
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a5/
LA  - ru
ID  - TMF_1970_2_1_a5
ER  - 
%0 Journal Article
%A S. P. Kuleshov
%A V. A. Matveev
%A A. N. Sisakyan
%T Glauber type representation for the scattering amplitude of high-energy Dirac particles on smooth potentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 73-79
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a5/
%G ru
%F TMF_1970_2_1_a5
S. P. Kuleshov; V. A. Matveev; A. N. Sisakyan. Glauber type representation for the scattering amplitude of high-energy Dirac particles on smooth potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 1, pp. 73-79. http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a5/

[1] V. R. Garsevanishvili, V. A. Matveev, L. A. Slepchenko, A. N. Tavkhelidze, Phys. Lett., 29B (1969), 191 | DOI

[2] V. R. Garsevanishvili, S. V. Goloskokov, V. A. Matveev, L. A. Slepchenko, Preprint, E2-4361, OIYaI, 1969

[3] A. A. Logunov, A. N. Tavkhelidse, Nuovo Cim., 29 (1963), 380 | DOI | MR

[4] A. N. Tavkhelidze, Lectures on Quasipotential Methods in Field Theory, Tata Institute of Fundamental Research, Bombay, 1964; В. Г. Кадышевский, А. Н. Тавхелидзе, “Трехмерная формулировка релятивистской проблемы двух тел”, Труды Международного семинара по теории элементарных частиц, Варна, 1969

[5] S. P. Alliluyev, S. S. Gershtein, A. A. Logunov, Phys. Lett., 18 (1965), 195 | DOI

[6] R. J. Glauber, Lectures in Theoretical Physics, 1, N. Y., 1959, 315 | MR | Zbl

[7] V. I. Savrin, O. A. Khrustalev, YaF, 8 (1968), 1016; В. И. Саврин, Н. Е. Тюрин, О. А. Хрусталев, Препринт СТФ 69-23, ИФВЭ, Серпухов, 1969; В. И. Саврин, Н. Е. Тюрин, О. А. Хрусталев, Сообщения ОИЯИ, Е2-4479, 1969

[8] L. I. Schiff, Phys. Rev., 103 (1956), 443 | DOI | MR | Zbl

[9] D. S. Saxon, Phys. Rev., 107 (1957), 871 ; A. Baker, Phys. Rev., B134 (1964), 240 ; D. R. Yennie, F. L. Boos, D. C. Rovenhall, Phys. Rev., B137 (1965), 882 | DOI | Zbl | DOI | MR | DOI | MR

[10] A. S. Davydov, Kvantovaya mekhanika, Fizmatgiz, 1963 | MR

[11] S. P. Kuleshov, V. A. Matveev, A. N. Sisakyan, Soobscheniya OIYaI, F2-4455, 1969 | Zbl