Essentially nonlinear interaction Lagrangians and nonlocalized quantum field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 1, pp. 36-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A formal scheme is proposed for considering the quantum theory of a single-component scalar field $\varphi(x)$ with essentially nonlinear Lagrangian interaction of the form $$ L_I(x)=g\sum_{n=0}^\infty\frac{u_n}{n!}\,{:}\varphi^n(x){:}, $$ where $u_n$ is a sequence of numbers which satisfy certain general equations. Reasons are given in favor of the fact that within the bounds of the proposed scheme, a form factor can be selected such that the $S$-matrix constructed for Lagrangian interaction $L_I(x)$ should be finite and unitary in every order of perturbation theory.
@article{TMF_1970_2_1_a2,
     author = {G. V. Efimov},
     title = {Essentially nonlinear interaction {Lagrangians} and nonlocalized quantum field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {36--54},
     year = {1970},
     volume = {2},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a2/}
}
TY  - JOUR
AU  - G. V. Efimov
TI  - Essentially nonlinear interaction Lagrangians and nonlocalized quantum field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 36
EP  - 54
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a2/
LA  - ru
ID  - TMF_1970_2_1_a2
ER  - 
%0 Journal Article
%A G. V. Efimov
%T Essentially nonlinear interaction Lagrangians and nonlocalized quantum field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 36-54
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a2/
%G ru
%F TMF_1970_2_1_a2
G. V. Efimov. Essentially nonlinear interaction Lagrangians and nonlocalized quantum field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 1, pp. 36-54. http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a2/

[1] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Gostekhizdat, 1957 | MR

[2] D. C. Bonlware, L. S. Brown, Phys. Rev., 172, 5; (1968), 1628 | DOI

[3] Y. Nambu, Phys. Letters, 26B (1968), 626 | DOI

[4] M. K. Volkov, Commun. math. Phys., 7 (1968), 289 | DOI | MR | Zbl

[5] T. D. Lee, Preprint CERN. TH-940, 1968 | MR

[6] G. V. Efimov, Commun. math. Phys., 7 (1968), 138 | DOI | MR | Zbl

[7] G. V. Efimov, Preprint ITF-68-52, Kiev, 1968

[8] G. V. Efimov, Commun. math. Phys., 5 (1967), 42 | DOI | MR | Zbl

[9] G. V. Efimov, Preprint ITF-69-54, Kiev, 1968

[10] G. V. Efimov, YaF, 4 (1966), 432

[11] G. V. Efimov, Preprint ITF-68-55, Kiev, 1968

[12] M. A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, Fizmatgiz, 1962 | MR