Stationary-phase method for Feynman's continual integral
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 1, pp. 30-35
Cet article a éte moissonné depuis la source Math-Net.Ru
The formula obtained earlier by the author, for the condition that the classical paths of the functional $\smallint Ldt$ are not degenerate, is generalized.
@article{TMF_1970_2_1_a1,
author = {V. P. Maslov},
title = {Stationary-phase method for {Feynman's} continual integral},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {30--35},
year = {1970},
volume = {2},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a1/}
}
V. P. Maslov. Stationary-phase method for Feynman's continual integral. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 1, pp. 30-35. http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a1/
[1] R. Feinman, “Prostranstvenno-vremennoi podkhod k nerelyativistskoi kvantovoi mekhanike”, Voprosy prichinnosti v kvantovoi mekhanike, Sb., IL, 1955
[2] V. P. Maslov, ZhVM i MF, 1 (1961), 638 | MR | Zbl
[3] G. Zeifert, V. Trelfall, Variatsionnoe ischislenie v tselom, IL, 1947 | MR
[4] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, MGU, 1965 | MR
[5] V. I. Arnold, Funktsionalnyi analiz, 1:1 (1967), 1–14 | MR | Zbl
[6] D. B. Fuks, DAN SSSR, 178 (1968), 303 | MR | Zbl
[7] V. S. Buslaev, DAN SSSR, 184 (1969), 59