Stationary-phase method for Feynman's continual integral
Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 1, pp. 30-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The formula obtained earlier by the author, for the condition that the classical paths of the functional $\smallint Ldt$ are not degenerate, is generalized.
@article{TMF_1970_2_1_a1,
     author = {V. P. Maslov},
     title = {Stationary-phase method for {Feynman's} continual integral},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {30--35},
     year = {1970},
     volume = {2},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a1/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Stationary-phase method for Feynman's continual integral
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 30
EP  - 35
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a1/
LA  - ru
ID  - TMF_1970_2_1_a1
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Stationary-phase method for Feynman's continual integral
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 30-35
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a1/
%G ru
%F TMF_1970_2_1_a1
V. P. Maslov. Stationary-phase method for Feynman's continual integral. Teoretičeskaâ i matematičeskaâ fizika, Tome 2 (1970) no. 1, pp. 30-35. http://geodesic.mathdoc.fr/item/TMF_1970_2_1_a1/

[1] R. Feinman, “Prostranstvenno-vremennoi podkhod k nerelyativistskoi kvantovoi mekhanike”, Voprosy prichinnosti v kvantovoi mekhanike, Sb., IL, 1955

[2] V. P. Maslov, ZhVM i MF, 1 (1961), 638 | MR | Zbl

[3] G. Zeifert, V. Trelfall, Variatsionnoe ischislenie v tselom, IL, 1947 | MR

[4] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, MGU, 1965 | MR

[5] V. I. Arnold, Funktsionalnyi analiz, 1:1 (1967), 1–14 | MR | Zbl

[6] D. B. Fuks, DAN SSSR, 178 (1968), 303 | MR | Zbl

[7] V. S. Buslaev, DAN SSSR, 184 (1969), 59

[8] V. L. Dubnov, DAN SSSR, 183 (1968), 754 | MR | Zbl

[9] Cecile Morette, Phys. Rev., 81 (1951), 848 | DOI | Zbl