Statistical derivation of the Kramers--Fokker--Planck equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 407-420

Voir la notice de l'article provenant de la source Math-Net.Ru

The kinetic equation for this subsystem, a generalized Kramers–Fokker–Planck equation, which is an extension of the Liouville equation to the case of a nonisolated system, is derived by using the method of nonequilibrium distribution functions developed earlier by one of the authors.
@article{TMF_1969_1_3_a9,
     author = {A. G. Bashkirov and D. N. Zubarev},
     title = {Statistical derivation of the {Kramers--Fokker--Planck} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {407--420},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a9/}
}
TY  - JOUR
AU  - A. G. Bashkirov
AU  - D. N. Zubarev
TI  - Statistical derivation of the Kramers--Fokker--Planck equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1969
SP  - 407
EP  - 420
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a9/
LA  - ru
ID  - TMF_1969_1_3_a9
ER  - 
%0 Journal Article
%A A. G. Bashkirov
%A D. N. Zubarev
%T Statistical derivation of the Kramers--Fokker--Planck equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1969
%P 407-420
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a9/
%G ru
%F TMF_1969_1_3_a9
A. G. Bashkirov; D. N. Zubarev. Statistical derivation of the Kramers--Fokker--Planck equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 407-420. http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a9/