Quasiclassical asymptotics of a point-source function for the stationary Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 384-406
Cet article a éte moissonné depuis la source Math-Net.Ru
Formulas for the quasiclassical asymptotics of point-source (Green's) functions (uniform with respect to $x$) of the stationary Schrödinger equation are derived. Assuming that the system of Newton's equations in the potential field $V(x)$, where $V(x)$ is a smooth and rapidly diminishing function, has no finite orbits at the energy level $E$, a proof of the quasiclassical asymptotics for the point-source function is presented.
@article{TMF_1969_1_3_a8,
author = {V. V. Kucherenko},
title = {Quasiclassical asymptotics of a~point-source function for the stationary {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {384--406},
year = {1969},
volume = {1},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a8/}
}
TY - JOUR AU - V. V. Kucherenko TI - Quasiclassical asymptotics of a point-source function for the stationary Schrödinger equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1969 SP - 384 EP - 406 VL - 1 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a8/ LA - ru ID - TMF_1969_1_3_a8 ER -
V. V. Kucherenko. Quasiclassical asymptotics of a point-source function for the stationary Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 384-406. http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a8/
[1] I. B. Keller, G. S. S. Avila, Comm. Pure Appl. Math., 16 (1963), 363 | DOI | MR | Zbl
[2] V. M. Babich, ZhVM i MF, 5 (1965), 949 | MR | Zbl
[3] V. V. Kucherenko, ZhVM i MF, 8 (1968), 908 | Zbl
[4] V. P. Maslov, DAN SSSR, 177:6 (1967) | MR | Zbl
[5] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, MGU, 1965 | MR
[6] V. V. Kucherenko, Diss., MGU, 1968
[7] S. L. Sobolev, Tr. seismol. in-ta, 1930, no. 6 | Zbl