Transition of the Heisenberg equation for $h\to 0$ to the dynamic equation of a monoatomic ideal gas and quantization of relativistic hydrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 378-383 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the equation $h^2\square\psi+k^2\psi^{7/3}=0$ for $h\to 0$ transforms into a system of dynamic equations of a monoatomic ideal gas ($c_v =3/2$), and the equation $h^2\square\psi+k^2|\psi|^2\psi=0$ for $h\to 0$ transforms into a system of dynamic equations of a monoatomic ideal gas ($c_v =1$).
@article{TMF_1969_1_3_a7,
     author = {V. P. Maslov},
     title = {Transition of the {Heisenberg} equation for $h\to 0$ to the dynamic equation of a monoatomic ideal gas and quantization of relativistic hydrodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {378--383},
     year = {1969},
     volume = {1},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a7/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Transition of the Heisenberg equation for $h\to 0$ to the dynamic equation of a monoatomic ideal gas and quantization of relativistic hydrodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1969
SP  - 378
EP  - 383
VL  - 1
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a7/
LA  - ru
ID  - TMF_1969_1_3_a7
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Transition of the Heisenberg equation for $h\to 0$ to the dynamic equation of a monoatomic ideal gas and quantization of relativistic hydrodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1969
%P 378-383
%V 1
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a7/
%G ru
%F TMF_1969_1_3_a7
V. P. Maslov. Transition of the Heisenberg equation for $h\to 0$ to the dynamic equation of a monoatomic ideal gas and quantization of relativistic hydrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 378-383. http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a7/

[1] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Gostekhizdat, 1955 | MR

[2] S. A. Lomov, “Postroenie asimptoticheskikh reshenii nekotorykh zadach s parametrami”, Izv. AN SSSR, ser. mat., 32 (1968), 884 | MR | Zbl

[3] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, 1965 | MR