Group-theoretical aspects of the variable frequency oscillator problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 360-374
Voir la notice de l'article provenant de la source Math-Net.Ru
A group-theoretical intel pretation is given for the variable frequency quantum oscillator in
which the frequency dependence on time, $\omega(t)$, is arbitrary. The transition probability, Wren, between states $|n,\omega_{-}\rangle$ and $|m,\omega_{+}\rangle$ with a fixed number of quanta is expressed by means of a matrix element of the $D$-function for the
$SU(1,1)$ group. For the case in which frequency varies periodically, the oscillator quasi-energy spectrum is found and its relationship to the properties of the generators of the $SU(1,1)$ group is indicated. It is shown that the problem of spin inversion in an external magnetic field, $\mathbf H(t)$, reduces to solution of the equation of motion for a one-dimensional, variable frequency, classical oscillator.
@article{TMF_1969_1_3_a5,
author = {A. M. Perelomov and V. S. Popov},
title = {Group-theoretical aspects of the variable frequency oscillator problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {360--374},
publisher = {mathdoc},
volume = {1},
number = {3},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a5/}
}
TY - JOUR AU - A. M. Perelomov AU - V. S. Popov TI - Group-theoretical aspects of the variable frequency oscillator problem JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1969 SP - 360 EP - 374 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a5/ LA - ru ID - TMF_1969_1_3_a5 ER -
A. M. Perelomov; V. S. Popov. Group-theoretical aspects of the variable frequency oscillator problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 360-374. http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a5/