One class of representations of current algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 318-328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Linear representations of commutation relations in current algebra by bounded operators in the direct integral of Hilbert spaces, and the invariance of these representations with respect to a group, are discussed.
@article{TMF_1969_1_3_a1,
     author = {A. U. Klimyk},
     title = {One class of representations of current algebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {318--328},
     year = {1969},
     volume = {1},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a1/}
}
TY  - JOUR
AU  - A. U. Klimyk
TI  - One class of representations of current algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1969
SP  - 318
EP  - 328
VL  - 1
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a1/
LA  - ru
ID  - TMF_1969_1_3_a1
ER  - 
%0 Journal Article
%A A. U. Klimyk
%T One class of representations of current algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1969
%P 318-328
%V 1
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a1/
%G ru
%F TMF_1969_1_3_a1
A. U. Klimyk. One class of representations of current algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 318-328. http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a1/

[1] E. H. Roffman, J. Math. Phys., 8 (1967), 1954 | DOI | Zbl

[2] R. F. Streater, Current Commutation Relations and Continuous Tensor Products, Preprint, London, 1967

[3] R. F. Streater, Current Commutation Relations, Continuous Tensor Products and Infinitely Divisible Group Representations, Preprint of International School of Physics “Enrico Fermi”, Varenna, 1968 | MR

[4] H. Araki, Factorizable Representation of Current Algebra, Preprint, Kyoto, 1968

[5] L. S. Pontryagin, Nepreryvnye gruppy, Gostekhizdat, 1954 | MR