Algebraic structure of local field theory with finite-fold vacuum degeneracy
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 305-317
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the Wightman functional satisfying not only the usual axiomatic requirements but also an additional requirement that the vacuum subspace of the representation generated byiL be finite-dimensional is representable, and uniquely so, in the form of a mixture of pure functionals each of which corresponds to the unique-vacuum theory.
@article{TMF_1969_1_3_a0,
author = {A. N. Vasil'ev},
title = {Algebraic structure of local field theory with finite-fold vacuum degeneracy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {305--317},
year = {1969},
volume = {1},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a0/}
}
A. N. Vasil'ev. Algebraic structure of local field theory with finite-fold vacuum degeneracy. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 305-317. http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a0/
[1] A. S. Wightman, Phys. Rev., 101 (1956), 860 | DOI | MR | Zbl
[2] H. J. Borchers, Nuovo Cim., 24 (1962), 214 | DOI | MR | Zbl
[3] H. J. Borchers, Comm. math. phys., 1 (1965), 49 | DOI | MR | Zbl
[4] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, t. 4, Fizmatgiz, 1961 | MR
[5] A. N. Vassilev, Comm. math. Phys., 13 (1969), 81 | DOI | MR
[6] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz v normirovannykh prostranstvakh, gl. 8, Fizmatgiz, 1959 | MR