Algebraic structure of local field theory with finite-fold vacuum degeneracy
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 305-317 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the Wightman functional satisfying not only the usual axiomatic requirements but also an additional requirement that the vacuum subspace of the representation generated byiL be finite-dimensional is representable, and uniquely so, in the form of a mixture of pure functionals each of which corresponds to the unique-vacuum theory.
@article{TMF_1969_1_3_a0,
     author = {A. N. Vasil'ev},
     title = {Algebraic structure of local field theory with finite-fold vacuum degeneracy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {305--317},
     year = {1969},
     volume = {1},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a0/}
}
TY  - JOUR
AU  - A. N. Vasil'ev
TI  - Algebraic structure of local field theory with finite-fold vacuum degeneracy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1969
SP  - 305
EP  - 317
VL  - 1
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a0/
LA  - ru
ID  - TMF_1969_1_3_a0
ER  - 
%0 Journal Article
%A A. N. Vasil'ev
%T Algebraic structure of local field theory with finite-fold vacuum degeneracy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1969
%P 305-317
%V 1
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a0/
%G ru
%F TMF_1969_1_3_a0
A. N. Vasil'ev. Algebraic structure of local field theory with finite-fold vacuum degeneracy. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 305-317. http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a0/

[1] A. S. Wightman, Phys. Rev., 101 (1956), 860 | DOI | MR | Zbl

[2] H. J. Borchers, Nuovo Cim., 24 (1962), 214 | DOI | MR | Zbl

[3] H. J. Borchers, Comm. math. phys., 1 (1965), 49 | DOI | MR | Zbl

[4] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, t. 4, Fizmatgiz, 1961 | MR

[5] A. N. Vassilev, Comm. math. Phys., 13 (1969), 81 | DOI | MR

[6] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz v normirovannykh prostranstvakh, gl. 8, Fizmatgiz, 1959 | MR