Algebraic structure of local field theory with finite-fold vacuum degeneracy
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 305-317
It is shown that the Wightman functional satisfying not only the usual axiomatic requirements but also an additional requirement that the vacuum subspace of the representation generated byiL be finite-dimensional is representable, and uniquely so, in the form of a mixture of pure functionals each of which corresponds to the unique-vacuum theory.
@article{TMF_1969_1_3_a0,
author = {A. N. Vasil'ev},
title = {Algebraic structure of local field theory with finite-fold vacuum degeneracy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {305--317},
year = {1969},
volume = {1},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a0/}
}
A. N. Vasil'ev. Algebraic structure of local field theory with finite-fold vacuum degeneracy. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 3, pp. 305-317. http://geodesic.mathdoc.fr/item/TMF_1969_1_3_a0/
[1] A. S. Wightman, Phys. Rev., 101 (1956), 860 | DOI | MR | Zbl
[2] H. J. Borchers, Nuovo Cim., 24 (1962), 214 | DOI | MR | Zbl
[3] H. J. Borchers, Comm. math. phys., 1 (1965), 49 | DOI | MR | Zbl
[4] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, t. 4, Fizmatgiz, 1961 | MR
[5] A. N. Vassilev, Comm. math. Phys., 13 (1969), 81 | DOI | MR
[6] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz v normirovannykh prostranstvakh, gl. 8, Fizmatgiz, 1959 | MR