Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble formalism
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 2, pp. 251-274
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper gives a rigorous mathematical description of the equilibrium state of the infinite system of particles on the basis of canonical ensemble theory. A proof is given of the existence
and uniqueness of the limiting distribution functions and their analytical dependence on density.
Results have been obtained by using methods developed by two of the authors in 1949,
and based on the application of the theory of Banaeh spaces to the study of the equation forthe
distribution functions.
@article{TMF_1969_1_2_a8,
author = {N. N. Bogolyubov and D. Ya. Petrina and B. I. Khatset},
title = {Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble formalism},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {251--274},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a8/}
}
TY - JOUR AU - N. N. Bogolyubov AU - D. Ya. Petrina AU - B. I. Khatset TI - Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble formalism JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1969 SP - 251 EP - 274 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a8/ LA - ru ID - TMF_1969_1_2_a8 ER -
%0 Journal Article %A N. N. Bogolyubov %A D. Ya. Petrina %A B. I. Khatset %T Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble formalism %J Teoretičeskaâ i matematičeskaâ fizika %D 1969 %P 251-274 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a8/ %G ru %F TMF_1969_1_2_a8
N. N. Bogolyubov; D. Ya. Petrina; B. I. Khatset. Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 2, pp. 251-274. http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a8/