New covariant approach to spinor-field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 2, pp. 222-237
Cet article a éte moissonné depuis la source Math-Net.Ru
A covariant spinor-field theory is described which differs in its initial ideas and its results from spinor theory in Riemannian space in which an $n$-hedral formalism is used. The theory is nonlinear even when curvature of the metric of the space can be neglected. In the linear approximation, the theory yields the Dirac equation for a generalized wave function which includes, along with the electronic states, additional states which are interpreted as neutrino states.
@article{TMF_1969_1_2_a5,
author = {M. V. Gorbatenko and Yu. A. Romanov},
title = {New covariant approach to spinor-field theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {222--237},
year = {1969},
volume = {1},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a5/}
}
M. V. Gorbatenko; Yu. A. Romanov. New covariant approach to spinor-field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 2, pp. 222-237. http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a5/
[1] E. Kartan, Teoriya spinorov, IL, 1947
[2] V. Fock, Z. Phys., 57 (1929), 261 | DOI | Zbl
[3] W. L. Bade, H. Jehle, Rev. Mod. Phys., 25 (1953), 714 | DOI | MR | Zbl
[4] D. Hestenes, J. Math. Phys., 8 (1967), 798 | DOI
[5] P. G. Bergmann, Phys. Rev., 107 (1957), 624 | DOI | MR | Zbl
[6] H. S. Green, Proc. Roy. Soc., 245 (1958), 521 | DOI | MR | Zbl
[7] H. Nakamura, T. Toyoda, Nucl. Phys., 22 (1961), 524 | DOI | MR | Zbl
[8] J. G. Fletcher, Nuovo Cim., 8 (1958), 451 | DOI | MR | Zbl