Vacuum degeneration and spurion formalism for the rotation group
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 2, pp. 182-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that, when vacuum degenerates in accordance with the rotation group, the appearance of additional (relative to the field) system degrees of freedom may be described by means of introducing spurion creation-annihilation operators (in the same manner as for the gage group considered previously, [4]).
@article{TMF_1969_1_2_a1,
     author = {A. N. Vasil'ev and A. F. Yakubov},
     title = {Vacuum degeneration and spurion formalism for the rotation group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {182--186},
     year = {1969},
     volume = {1},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a1/}
}
TY  - JOUR
AU  - A. N. Vasil'ev
AU  - A. F. Yakubov
TI  - Vacuum degeneration and spurion formalism for the rotation group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1969
SP  - 182
EP  - 186
VL  - 1
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a1/
LA  - ru
ID  - TMF_1969_1_2_a1
ER  - 
%0 Journal Article
%A A. N. Vasil'ev
%A A. F. Yakubov
%T Vacuum degeneration and spurion formalism for the rotation group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1969
%P 182-186
%V 1
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a1/
%G ru
%F TMF_1969_1_2_a1
A. N. Vasil'ev; A. F. Yakubov. Vacuum degeneration and spurion formalism for the rotation group. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 2, pp. 182-186. http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a1/

[1] R. Haag, Phys. Rev., 112 (1958), 669 | DOI | MR | Zbl

[2] D. Ruelle, Helv. Phys. Acta, 35 (1962), 147 | MR | Zbl

[3] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, 1958

[4] A. N. Vassilev, Comm. math. phys., 13 (1969), 102 | DOI | MR

[5] A. N. Vassilev, Comm. math. phys., 13 (1969), 81 | DOI | MR