Extremal properties of the nonequilibrium statistical operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 1, pp. 137-149
Voir la notice de l'article provenant de la source Math-Net.Ru
From the extremum condition on the information entropy for fixed values of the thermodynamic
coordinates at any past time the authors deduce the nonequilibrium statistical operator
obtained earlier by one of them [3] on the basis of other considerations. The theorem
of Prigogine on the minimum entropy production [4] and its generalization, namely the
Glansdorf–Prigogine theorem [6], are shown to be related to the condition of maximum
entropy for a quasi-equilibrium distribution.
@article{TMF_1969_1_1_a9,
author = {D. N. Zubarev and V. P. Kalashnikov},
title = {Extremal properties of the nonequilibrium statistical operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {137--149},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a9/}
}
TY - JOUR AU - D. N. Zubarev AU - V. P. Kalashnikov TI - Extremal properties of the nonequilibrium statistical operator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1969 SP - 137 EP - 149 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a9/ LA - ru ID - TMF_1969_1_1_a9 ER -
D. N. Zubarev; V. P. Kalashnikov. Extremal properties of the nonequilibrium statistical operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 1, pp. 137-149. http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a9/