Extremal properties of the nonequilibrium statistical operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 1, pp. 137-149

Voir la notice de l'article provenant de la source Math-Net.Ru

From the extremum condition on the information entropy for fixed values of the thermodynamic coordinates at any past time the authors deduce the nonequilibrium statistical operator obtained earlier by one of them [3] on the basis of other considerations. The theorem of Prigogine on the minimum entropy production [4] and its generalization, namely the Glansdorf–Prigogine theorem [6], are shown to be related to the condition of maximum entropy for a quasi-equilibrium distribution.
@article{TMF_1969_1_1_a9,
     author = {D. N. Zubarev and V. P. Kalashnikov},
     title = {Extremal properties of the nonequilibrium statistical operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {137--149},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a9/}
}
TY  - JOUR
AU  - D. N. Zubarev
AU  - V. P. Kalashnikov
TI  - Extremal properties of the nonequilibrium statistical operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1969
SP  - 137
EP  - 149
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a9/
LA  - ru
ID  - TMF_1969_1_1_a9
ER  - 
%0 Journal Article
%A D. N. Zubarev
%A V. P. Kalashnikov
%T Extremal properties of the nonequilibrium statistical operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1969
%P 137-149
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a9/
%G ru
%F TMF_1969_1_1_a9
D. N. Zubarev; V. P. Kalashnikov. Extremal properties of the nonequilibrium statistical operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 1, pp. 137-149. http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a9/