Representations of the Poincaré group in $E(2)$ bases
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 1, pp. 101-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Constructions are given of irreducible unitary representations of the quantum-mechanical Poincaré group in two bases associated with the $E(2)$ subgroup for the ease when the square of the mass and the energy are positive, i.e., $M^2>0$ and $P_0>0$. Expressions are found for the generators and the transformation functions from a canonical basis to the $E(2)$ bases are caleuiated. The reduction of a direct product of irreducible representations in an $E(2)$ basis is considered at the end of the paper.
@article{TMF_1969_1_1_a7,
     author = {Yu. V. Novozhilov and E. V. Prokhvatilov},
     title = {Representations of the {Poincar\'e} group in $E(2)$~bases},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {101--119},
     year = {1969},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a7/}
}
TY  - JOUR
AU  - Yu. V. Novozhilov
AU  - E. V. Prokhvatilov
TI  - Representations of the Poincaré group in $E(2)$ bases
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1969
SP  - 101
EP  - 119
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a7/
LA  - ru
ID  - TMF_1969_1_1_a7
ER  - 
%0 Journal Article
%A Yu. V. Novozhilov
%A E. V. Prokhvatilov
%T Representations of the Poincaré group in $E(2)$ bases
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1969
%P 101-119
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a7/
%G ru
%F TMF_1969_1_1_a7
Yu. V. Novozhilov; E. V. Prokhvatilov. Representations of the Poincaré group in $E(2)$ bases. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 1, pp. 101-119. http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a7/

[1] E. P. Wigner, Ann. Math., 40 (1939), 149 | DOI | MR | Zbl

[2] J. S. Lomont, H. E. Moses, J. Math. Phys., 5 (1964), 294 | DOI | MR | Zbl

[3] I. S. Shapiro, DAN SSSR, 106 (1956), 647 | Zbl

[4] M. Jacob, G. C. Wick, Ann. Phys., 7 (1959), 404 | DOI | MR | Zbl

[5] Yu. V. Novozhilov, E. V. Prokhvatilov, YaF, 10 (1969), 199

[6] M. A. Naimark, Lineinye predstavleniya gruppy Lorentsa, Fizmatgiz, 1958 | MR

[7] R. Dashen, M. Gell-Mann, Phys. Rev. Lett., 17 (1966), 340 ; S. Fubini, G. Furlan, Physics, 4 (1965), 229 | DOI | MR

[8] R. Dashen, M. Gell-Mann, Coral Gable Conference Report, 1966; H. Bebie, H. Leutwyler, Phys. Rev. Lett., 19 (1967), 618 ; S. J. Chang, R. F. Dashen, L. O'Raifeartaigh, Phys. Rev. Lett., 21 (1968), 1026 | DOI | DOI

[9] Yu. M. Shirokov, ZhETF, 33, 861 ; 1196 ; (1957), 1208 | Zbl

[10] J. F. Boyce, R. Delbourgo, A. Strathdee, Preprint ICPT, 1C/67/9, 1967

[11] A. Z. Dolginov, ZhETF, 30 (1956), 747

[12] N. Ya. Vilenkin, Ya. A. Smorodinskii, ZhETF, 46 (1964), 1793 | MR

[13] G. I. Kuznetsov, M. I. Liberman, A. A. Makarov, Ya. A. Smorodinskii, Preprint R2-4291, OIYaI, 1969 | MR

[14] H. Joos, Fortschr. Phys., 10 (1962), 65 | DOI | Zbl

[15] S. J. Chang, L. O'Raifeartaigh, Preprint Princeton, 1968

[16] J. S. Lomont, J. Math. Phys., 1 (1960), 237 ; A. Moussa, R. Stora, Lectures in Theoretical Physics, VIIA, Boulder, Colorado, 1965 | DOI | MR | Zbl

[17] V. S. Popov, ZhETF, 37 (1959), 1116 | MR | Zbl

[18] J. Werle, Relativistic Theory of Reaction, PWN, Warszawa, 1966 | Zbl

[19] G. N. Vatson, Teoriya besselevykh funktsii, IL, 1949; Н. Я. Виленкин, Специальные функции и теория представлений групп, Наука, 1965 | MR