Mass spectrum of relativistic invariant equations in an~infinite number of dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 1, pp. 50-59

Voir la notice de l'article provenant de la source Math-Net.Ru

An analysis is given for the spin dependence of the masses of states described by a relativistically invariant equation in an infinite number of dimensions. It is found that linear equations of GePfand– Yaglom type give rise to branches where the mass increases with the spin, as well as the usual falling branches, if restrictions are applied to the arbitrary element allowed by the relativistic invarianee. It is also found that the falling branches can be suppressed if a certain extension is made in the structure of the linear relativistically invariant equation. Examples are given.
@article{TMF_1969_1_1_a3,
     author = {A. A. Komar and L. M. Slad},
     title = {Mass spectrum of relativistic invariant equations in an~infinite number of dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {50--59},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a3/}
}
TY  - JOUR
AU  - A. A. Komar
AU  - L. M. Slad
TI  - Mass spectrum of relativistic invariant equations in an~infinite number of dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1969
SP  - 50
EP  - 59
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a3/
LA  - ru
ID  - TMF_1969_1_1_a3
ER  - 
%0 Journal Article
%A A. A. Komar
%A L. M. Slad
%T Mass spectrum of relativistic invariant equations in an~infinite number of dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1969
%P 50-59
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a3/
%G ru
%F TMF_1969_1_1_a3
A. A. Komar; L. M. Slad. Mass spectrum of relativistic invariant equations in an~infinite number of dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 1, pp. 50-59. http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a3/