Mass spectrum of relativistic invariant equations in an infinite number of dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 1, pp. 50-59
Cet article a éte moissonné depuis la source Math-Net.Ru
An analysis is given for the spin dependence of the masses of states described by a relativistically invariant equation in an infinite number of dimensions. It is found that linear equations of GePfand– Yaglom type give rise to branches where the mass increases with the spin, as well as the usual falling branches, if restrictions are applied to the arbitrary element allowed by the relativistic invarianee. It is also found that the falling branches can be suppressed if a certain extension is made in the structure of the linear relativistically invariant equation. Examples are given.
@article{TMF_1969_1_1_a3,
author = {A. A. Komar and L. M. Slad},
title = {Mass spectrum of relativistic invariant equations in an~infinite number of dimensions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {50--59},
year = {1969},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a3/}
}
TY - JOUR AU - A. A. Komar AU - L. M. Slad TI - Mass spectrum of relativistic invariant equations in an infinite number of dimensions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1969 SP - 50 EP - 59 VL - 1 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a3/ LA - ru ID - TMF_1969_1_1_a3 ER -
A. A. Komar; L. M. Slad. Mass spectrum of relativistic invariant equations in an infinite number of dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 1, pp. 50-59. http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a3/