Investigation of nonlinear realizations of chiral groups by the method of generating functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 1, pp. 19-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An exhaustive description is given of nonlinear realizations of the chiral groups $U_n\times U_n$ and $SU_n\times SU_n$ which are linearized on the subgroups $U_n$ and $SU_n$, respectively. The description is carried out by the method os generating functions using Sylvester – Lagrange polynomials. It is proved that the nonlinear realizations of the chiral group $SU_n\times SU_n$ are stipulated uniquely with an accuracy of up to a canonical redefinition of the field variables; under these conditions the method of generating functions allows explicit indication of the required substitution of field variables. It is shown that unlike semisimple groups, the non-semisimple group $U_n\times U_n$ has nonequivalent nonlinear realizations.
@article{TMF_1969_1_1_a1,
     author = {B. M. Zupnik and V. I. Ogievetskii},
     title = {Investigation of nonlinear realizations of chiral groups by the method of generating functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {19--33},
     year = {1969},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a1/}
}
TY  - JOUR
AU  - B. M. Zupnik
AU  - V. I. Ogievetskii
TI  - Investigation of nonlinear realizations of chiral groups by the method of generating functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1969
SP  - 19
EP  - 33
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a1/
LA  - ru
ID  - TMF_1969_1_1_a1
ER  - 
%0 Journal Article
%A B. M. Zupnik
%A V. I. Ogievetskii
%T Investigation of nonlinear realizations of chiral groups by the method of generating functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1969
%P 19-33
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a1/
%G ru
%F TMF_1969_1_1_a1
B. M. Zupnik; V. I. Ogievetskii. Investigation of nonlinear realizations of chiral groups by the method of generating functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 1, pp. 19-33. http://geodesic.mathdoc.fr/item/TMF_1969_1_1_a1/

[1] S. Weinberg, Phys. Rev. Lett., 18 (1967), 188 | DOI

[2] J. Schwinger, Phys. Lett., 24B (1967), 473 ; Phys. Rev. Lett., 18 (1967), 923 ; Phys. Rev., 167 (1968), 1432 | DOI | DOI | DOI

[3] J. A. Cronin, Phys. Rev., 161 (1967), 1483 | DOI

[4] W. A. Bardeen, B. Lee, Canadian Summer Institute Lectures, 1967

[5] J. Wess, B. Zumino, Phys. Rev., 163 (1967), 1727 | DOI

[6] L. Brown, Phys. Rev., 163 (1967), 1802 | DOI

[7] P. Chang, F. Gursey, Phys. Rev., 164 (1967), 1752 ; F. Gursey, Effective Lagrangians in Particle Physics, prepr. Schladming, 1968 | DOI

[8] Y. Ohnuki, Y. Yamaguchi, Chiral Dynamics, prepr. Tokyo, 1967

[9] B. W. Lee, H. T. Nieh, Phys. Rev., 166 (1968), 1507 | DOI

[10] S. Weinberg, Phys. Rev., 166 (1968), 1568 | DOI

[11] F. Gursey, Nuovo Cim., 16 (1960), 230 ; Ann. Phys. (N.Y.), 12 (1961), 91 ; G. Kramer, H. Rollnik, B. Stech, Z. Phys., 159 (1959), 564 ; M. Gell-Mann, M. Levy, Nuovo Cim., 46 (1960), 705 | DOI | MR | Zbl | DOI | Zbl | DOI | DOI | MR

[12] T. Minamikawa, Y. Miyamoto, Prog. Theor. Phys., 38 (1967), 1195 | DOI

[13] B. W. Lee, Phys. Rev. Lett., 20 (1968), 617 | DOI

[14] D. V. Volkov, ZhETF, Pisma, 7 (1968), 385

[15] B. M. Zupnik, Diplomnaya rabota, Dnepropetrovskii Universitet, 1968

[16] T. Shiozaki, Prog. Theor. Phys., 39 (1968), 189 | DOI

[17] M. Levy, Nuovo Cim., 52 (1967), 23 ; S. Gasiorovicz, D. A. Geffen, Prepr. Argone, 1968 | DOI

[18] W. A. Bardeen, B. W. Lee, Prepr. Stony Brook, 1968

[19] A. J. Macfarlane, P. H. Weicz, Nuovo Cim., 55A (1968), 853 ; prepr. Cambridge, 1965 | DOI

[20] C. G. Callan, S. Coleman, J. Wess, B. Zumino, Structure of Phenomenological Lagrangians. I, II, prepr. Cambridge, 1968

[21] V. I. Ogievetskii, I. V. Polubarinov, ZhETF, 48 (1965), 1625 | MR

[22] F. R. Gantmakher, Teoriya matrits, Nauka, 1967 | MR